【題目】如圖,在兩塊鋼板上打孔,用釘帽呈半球形、釘身為圓柱形的鉚釘(圖1)穿在一起,在沒有帽的一端錘打出一個帽,使得與釘帽的大小相等.鉚合的兩塊鋼板,成為某種鋼結(jié)構(gòu)的配件,其截面圖如圖2.(單位:mm,加工中不計(jì)損失).

(1)若釘身高度是釘帽高度的2倍,求鉚釘?shù)谋砻娣e.

(2)若每塊鋼板的厚度為12mm,求釘身的長度(結(jié)果精確到1 mm).

【答案】(1);(2)70

【解析】試題分析:設(shè)釘身的高為,釘身的底面半徑為,釘帽的底面半徑為,由題意可知:(1)圓柱的高,圓柱的側(cè)面積,半球的表面積,即可求出鉚釘?shù)谋砻娣e;2

設(shè)釘身長度為,則,由于,所以,即可求出釘身的長度.

試題解析:解:設(shè)釘身的高為,釘身的底面半徑為,釘帽的底面半徑為,由題意可知:1

1)圓柱的高2

圓柱的側(cè)面積3

半球的表面積5

所以鉚釘?shù)谋砻娣e7

28

9

設(shè)釘身長度為,則10

由于,所以,12

解得13

答:釘身的表面積為,釘身的長度約為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高中為了解高中學(xué)生的性別和喜歡打籃球是否有關(guān),對50名高中學(xué)生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:

喜歡打籃球

不喜歡打籃球

合計(jì)

男生

5

女生

10

合計(jì)

已知在這50人中隨機(jī)抽取1人,抽到喜歡打籃球的學(xué)生的概率為
(Ⅰ)請將上述列聯(lián)表補(bǔ)充完整;
(Ⅱ)判斷是否有99.5%的把握認(rèn)為喜歡打籃球與性別有關(guān)?
附:K2=

p(K2≥k0

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校大一新生中的6名同學(xué)打算參加學(xué)校組織的“演講團(tuán)”、“吉他協(xié)會”等五個社團(tuán),若每名同學(xué)必須參加且只能參加1個社團(tuán)且每個社團(tuán)至多兩人參加,則這6個人中沒有人參加“演講團(tuán)”的不同參加方法數(shù)為(
A.3600
B.1080
C.1440
D.2520

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知正方體ABCDA1B1C1D1.

(1)求證:平面A1BD∥平面B1D1C.

(2)若EF分別是AA1,CC1的中點(diǎn),求證:平面EB1D1∥平面FBD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知幾何體的三視圖(單位:cm).

(1)畫出這個幾何體的直觀圖(不要求寫畫法).

(2)求這個幾何體的表面積及體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xoy中,曲線C1 (t為參數(shù),t≠0),其中0≤α<π,在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:ρ=2sinθ,曲線C3:ρ=2 cosθ. (Ⅰ)求C2與C3交點(diǎn)的直角坐標(biāo);
(Ⅱ)若C2與C1相交于點(diǎn)A,C3與C1相交于點(diǎn)B,求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1x+2y+1=0,l2-2x+y+2=0,它們相交于點(diǎn)A.

(1)判斷直線l1l2是否垂直?請給出理由.

(2)求過點(diǎn)A且與直線l33x+y+4=0平行的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】節(jié)日前夕,小李在家門前的樹上掛了兩串彩燈,這兩串彩燈的第一次閃亮相互獨(dú)立,且都在通電后的4秒內(nèi)任一時刻等可能發(fā)生,然后每串彩燈以4秒為間隔閃亮,那么這兩串彩燈同時通電后,它們第一次閃亮的時候相差不超過2秒的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的是(
A.命題“x∈R,使得x2﹣1<0”的否定是:x∈R,均有x2﹣1<0
B.命題“若x=3,則x2﹣2x﹣3=0”的否命題是:若x≠3,則x2﹣2x﹣3≠0
C.“ ”是“ ”的必要而不充分條件
D.命題“cosx=cosy,則x=y”的逆否命題是真命題

查看答案和解析>>

同步練習(xí)冊答案