已知α∈(π,
2
),tanα=2,則cos(π-α)=
 
考點:運用誘導公式化簡求值
專題:三角函數(shù)的求值
分析:直接利用誘導公式化簡所求表達式,利用同角三角函數(shù)的基本關(guān)系式求解看.
解答: 解:∵α∈(π,
2
),tanα=2,
∴cos(π-α)=-cosα=
cos2α
sin2α+cos2α
=
1
tan2α+1
=
5
5
,
故答案為:
5
5
點評:本題考查誘導公式的應用,同角三角函數(shù)的基本關(guān)系式的應用,基本知識的考查.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若非零向量
a
,
b
,滿足|
a
+
b
|=|
b
|
,
a
⊥(
a
b
)
,則λ=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算
(1)已知tanx=2,求
cosx+sinx
cosx-sinx
的值;
(2)
cos(α-
π
2
)
sin(
5
2
π+α)
•sin(α-2π)•cos(2π-α).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(tanx)=sinxcosx,x∈(-
π
2
,
π
2
),則f(
1
2
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)集P={x|x=2k-1,k∈Z},Q={x|x=4k-1,k∈Z},則P、Q之間的關(guān)系為( 。
A、P=QB、P⊆Q
C、P?QD、P與Q不存在包含關(guān)系

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題:?x∈R,x2-x+1<0是
 
命題(填寫“真“或“假”)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A={x|y=lo
g
(x+1)
2
}
,集合B={y|y=
1
x
,x>3}
,則A∩B=( 。
A、(
1
3
,+∞)
B、(0,
1
3
)
C、(-1,+∞)
D、(-1,
1
3
)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列:an=
1
n(n+2)
,則它的前n項和為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過點P(2,3)的直線l與圓x2+y2=25相交于A,B兩點,當弦AB最短時,直線l的方程式是(  )
A、2x+3y-13=0
B、2x-3y+5=0
C、3x-2y=0
D、3x+2y-12=0

查看答案和解析>>

同步練習冊答案