已知圓C經(jīng)過點A(2,0),B(4,0),C(0,2),
(1)求圓C的方程;
(2)若直線l:y=x+b與圓C有交點,求b的取值范圍.
(1)∵圓經(jīng)過點A(2,0)B(4,0),則圓心在直線x=3上;
設(shè)圓心坐標(biāo)為M(3,b)
則|MA|=|MC|即
(3-2)2+(b-0)2
=
(3-0)2+(b-2)2

解得b=3,
∴圓C的半徑r=|MA|=
10

∴圓C的方程為:(x-3)2+(y-3)2=10;
(2)∵直線l:y=x+b與圓C有交點,
∴圓心M(3,3)到直線l的距離d≤r,即
|3-3+b|
2
10

解得-2
5
≤b≤2
5

∴b的取值范圍為[-2
5
,2
5
].
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

與圓關(guān)于直線成軸對稱的圓的方程是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

以圓x2+y2-2x-2y-1=0內(nèi)橫坐標(biāo)與縱坐標(biāo)均為整數(shù)的點為頂點的三角形的個數(shù)為( 。
A.76B.78C.81D.84

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知曲線C:(5-2m)x2+(m2+2)y2=4-m2,(m∈R)表示圓,則圓的半徑為(  )
A.
5
B.1C.
3
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓C:(x-3)2+(y-4)2=4,
(Ⅰ)若直線l1過定點A(1,0),且與圓C相切,求l1的方程;
(Ⅱ)若圓D的半徑為3,圓心在直線l2:x+y-2=0上,且與圓C外切,求圓D的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知位于y軸左側(cè)的圓C與y軸相切于點(0,1)且被x軸分成的兩段圓弧長之比為1:2,過點H(0,t)的直線l于圓C相交于M、N兩點,且以MN為直徑的圓恰好經(jīng)過坐標(biāo)原點O.
(1)求圓C的方程;
(2)當(dāng)t=1時,求出直線l的方程;
(3)求直線OM的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,經(jīng)過B(1,2)作兩條互相垂直的直線l1和l2,l1交y軸正半軸于點A,l2交x軸正半軸于點C.
(1)若A(0,1),求點C的坐標(biāo);
(2)試問是否總存在經(jīng)過O,A,B,C四點的圓?若存在,求出半徑最小的圓的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

過點Q(-2,
21
)
作圓O:x2+y2=r2(r>0)的切線,切點為D,且QD=4.
(1)求r的值;
(2)設(shè)P是圓O上位于第一象限內(nèi)的任意一點,過點P作圓C的切線l,且l交x軸于點A,交y軸于點B,設(shè)
OK
=
OA
+
OB
,求|
OK
|
的最小值(O為坐標(biāo)原點).
(3)從圓O外一點M(x1,y1)向該圓引一條切線,切點為T,N(2,3),且有|MT|=|MN|,求|MT|的最小值,并求此時點M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(幾何證明選講選做題)如圖,過點作圓的切線切于點,作割線交圓于兩點,其中,則       

查看答案和解析>>

同步練習(xí)冊答案