13.已知α,β都是銳角,且cosβ=$\frac{8}{17}$,cos(α+β)=-$\frac{4}{5}$,求sinα的值.

分析 依題意,利用同角三角函數(shù)間的基本關(guān)系可求得sinβ及sin(α+β),由于α=(α+β)-β,利用兩角差的正弦即可求得sinα的值.

解答 解:∵α,β都是銳角,
∴0<α+β<π,
∵cosβ=$\frac{8}{17}$,cos(α+β)=-$\frac{4}{5}$,
∴sinβ=$\sqrt{1-{cos}^{2}β}$=$\frac{15}{17}$,
sin(α+β)=$\sqrt{1-{cos}^{2}(α+β)}$=$\frac{3}{5}$,
∴sinα=sin[(α+β)-β]
=sin(α+β)cosβ-cos(α+β)•sinβ
=$\frac{3}{5}×\frac{8}{17}-(-\frac{4}{5})×\frac{15}{17}$=$\frac{84}{85}$.

點(diǎn)評 本題考查同角三角函數(shù)間的基本關(guān)系及兩角差的正弦,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}的前n項(xiàng)和Sn=2an-2n
(I)求a3、a4;
(Ⅱ)證明:數(shù)列{an+1-2an}是一個(gè)等比數(shù)列;
(Ⅲ)求{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若{$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$}為空間的一組基底,向量$\overrightarrow{OM}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$+m$\overrightarrow{OC}$,$\overrightarrow{AM}$=$λ\overrightarrow{AB}$+$μ\overrightarrow{AC}$,則m+λ+μ的值是( 。
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)P是橢圓$\frac{x^2}{25}+\frac{y^2}{16}=1$上的一點(diǎn),F(xiàn)1、F2是焦點(diǎn),若∠F1PF2=90°,則△PF1F2的面積為16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)曲線y=x2與x2+(y-a)2=1在同一交點(diǎn)處的切線相互垂直,則a=$\frac{1-\sqrt{17}}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{4}=1$的焦點(diǎn)為F1,F(xiàn)2,過F1的直線與橢圓C交于A,B兩點(diǎn),若△ABF2的周長是12,則橢圓C的離心率是$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.函數(shù)f(x)=|x-1|+2
(1)求不等式f(x)<4的解集.
(2)若關(guān)于x的不等式f(x)-2m<f(x+3)的解集為R,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知命題p:?x∈R,x2-5x+6>0,命題q:?α、β∈R,使sin(α+β)=sinα+sinβ,則下列命題為真命題的是( 。
A.p∧qB.p∨(¬q)C.(¬p)∧qD.p∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在下列條件中,可判斷平面α與β平行的是( 。
A.α⊥γ,且β⊥γ
B.m,n是兩條異面直線,且m∥β,n∥β,m∥α,n∥α
C.m,n是α內(nèi)的兩條直線,且m∥β,n∥β
D.α內(nèi)存在不共線的三點(diǎn)到β的距離相等

查看答案和解析>>

同步練習(xí)冊答案