17.近年來空氣污染是一個(gè)生活中重要的話題,PM2.5就是其中一個(gè)重要指標(biāo).各省、市、縣均要進(jìn)行實(shí)時(shí)監(jiān)測(cè),某市2015年11月的PM2.5濃度統(tǒng)計(jì)如圖所示.
日期PM2.5濃度日期PM2.5濃度日期PM2.5濃度
11-1 13711-1114411-2140
11-214311-1216611-2242
11-314511-1319711-2335
11-419311-1419411-2453
11-513311-1521911-2588
11-62211-164111-2629
11-72211-179011-27199
11-85711-184611-28287
11-911111-198011-29291
11-1013411-206711-30452
(1)請(qǐng)完成頻率分布表;
空氣質(zhì)量指數(shù)類別PM2.5 24小時(shí)濃度均值頻數(shù)頻率
優(yōu)0-354 $\frac{2}{15}$
36-757 $\frac{7}{30}$
輕度污染76-1154 
中度污染116-1506 
重度污染151-250  
嚴(yán)重污染251-500  
合計(jì)/301
(2)專家建議,空氣質(zhì)量為優(yōu)、良、輕度污染時(shí)可正常進(jìn)行戶外活動(dòng),中度污染及以上時(shí),取消一切戶外活動(dòng),在2015年11月份,該市某學(xué)校進(jìn)行了連續(xù)兩天的戶外拔河比賽,求拔河比賽能正常進(jìn)行的概率.

分析 (Ⅰ)由已知條件能作出頻率分布表.
(Ⅱ)由已知條件列舉法能求出拔河比賽能正常進(jìn)行的概率.

解答 解(Ⅰ)由已知作出頻率分布表為:

空氣質(zhì)量指數(shù)類別PM2.5 24小時(shí)濃度均值頻數(shù)頻率
優(yōu)0-354$\frac{2}{15}$
36-757$\frac{7}{30}$
輕度污染76-1154$\frac{2}{15}$
中度污染116-1506$\frac{1}{5}$
重度污染151-2506$\frac{1}{5}$
嚴(yán)重污染251-5003$\frac{1}{10}$
合計(jì)301
(Ⅱ) 學(xué)校進(jìn)行了連續(xù)兩天的戶外拔河比賽,要能正常進(jìn)行,需選擇的日期為:
(6,7)(7,8)(8,9)(16,17)(17,18)(18,19)(19,20)(20,21)(21,22)(22,23)(23,24)(24,25)(25,26),
所以拔河比賽能正常進(jìn)行的概率為$\frac{13}{29}$.

點(diǎn)評(píng) 本題考查頻率分布列的作法,考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意列舉法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.小明有4枚完全相同的硬幣,每個(gè)硬幣都分正反兩面.他把4枚硬幣疊成一摞(如圖),則所有相鄰兩枚硬幣中至少有一組同一面不相對(duì)的概率是$\frac{7}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}y≤x-1\\ x≤3\\ x+y≥4\end{array}\right.$,則z=2x-y的最大值是5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=$\frac{1}{\sqrt{x-3}}$的定義域是(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.對(duì)于定義在[0,+∞)上的函數(shù)f(x),若函數(shù)y=f(x)-(ax+b)滿足:①在區(qū)間[0,+∞)上單調(diào)遞減;②存在常數(shù)p,使其值域?yàn)椋?,p],則稱函數(shù)g(x)=ax+b為f(x)的“漸進(jìn)函數(shù)”.
(1)證明:函數(shù)g(x)=x+1是函數(shù)f(x)=$\frac{x^2+2x+3}{x+1}$,x∈[0,+∞)的漸進(jìn)函數(shù),并求此實(shí)數(shù)p的值;
(2)若函數(shù)f(x)=$\sqrt{x^2+1}$,x∈[0,+∞)的漸進(jìn)函數(shù)是g(x)=ax,求實(shí)數(shù)a的值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若直線ax+2by-2=0(a,b>0)始終平分圓x2+y2-4x-2y-8=0的周長(zhǎng),則ab的取值范圍是(0,$\frac{1}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.記關(guān)于x的不等式$\frac{x-a}{x+1}$<0的解集為P,不等式|x-1|≤1的解集為Q.
(1)若a=3,求P;
(2)若a>0,且Q⊆P,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列說法錯(cuò)誤的是( 。
A.命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”
B.“a>1且b>1”是“ab>1”的充分不必要條件
C.若命題p:?x0∈N,2${\;}^{{x}_{0}}$>1000,則¬p:?x∈N,2x≤1000
D.若p∧q為假命題,則p,q均為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知f(n)=1+$\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}({n∈{N^*}})$ 經(jīng)計(jì)算得f(2)=$\frac{3}{2},f(4)>2,f(8)>\frac{5}{2},f({16})>3,f({32})>\frac{7}{2}$
,…,觀察上述結(jié)果,可歸納出的一般結(jié)論為f(2n)≥$\frac{n+2}{2}$(n∈N*).

查看答案和解析>>

同步練習(xí)冊(cè)答案