A. | 2 | B. | $\frac{5}{4}$ | C. | $\frac{3}{2}$ | D. | $\frac{6}{5}$ |
分析 根據(jù)條件可得$\overrightarrow{OE}=\frac{λ}{2}(\overrightarrow{OB}+\overrightarrow{OC})$,而$\overrightarrow{OB}=\frac{3}{2}\overrightarrow{OD}$,帶入上式便可得出$\overrightarrow{OE}=\frac{3λ}{4}\overrightarrow{OD}+\frac{λ}{2}\overrightarrow{OC}$,這樣由C,E,D三點共線便可得到$\frac{3λ}{4}+\frac{λ}{2}=1$,從而可求出λ的值,進而便可得出AO與OE的比值.
解答 解:∵O,E,A三點共線,且A是BC的中點;
∴設$\overrightarrow{OE}=λ\overrightarrow{OA}=\frac{λ}{2}(\overrightarrow{OB}+\overrightarrow{OC})$;
又$\overrightarrow{OB}=\frac{3}{2}\overrightarrow{OD}$;
∴$\overrightarrow{OE}=\frac{3λ}{4}\overrightarrow{OD}+\frac{λ}{2}\overrightarrow{OC}$;
∵C,E,D三點共線;
∴$\frac{3λ}{4}+\frac{λ}{2}=1$;
解得$λ=\frac{4}{5}$;
∴$\overrightarrow{OE}=\frac{4}{5}\overrightarrow{OA}$;
∴$\frac{AO}{OE}=\frac{5}{4}$.
故選:B.
點評 考查共線向量基本定理,向量加法的平行四邊形法則,以及向量數(shù)乘的幾何意義,向量的數(shù)乘運算,知道當C,E,D三點共線時,有$\overrightarrow{OE}=x\overrightarrow{OD}+y\overrightarrow{OC}$且x+y=1.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-$\frac{{a}_{1}}{_{1}}$)(-$\frac{{a}_{2}}{_{2}}$)=-1 | B. | (a1,b1)•(a2,b2)=0 | ||
C. | -$\frac{{a}_{1}}{_{1}}$=$\frac{_{2}}{{a}_{2}}$ | D. | a1b2=a2b1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 15 | B. | 20 | C. | 30 | D. | 42 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{3}{8}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | -$\frac{3}{5}$ | C. | -$\frac{4}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com