分析 (I)根據(jù)面面垂直的判定定理證明平面ABCD⊥平面ADE即可
(Ⅱ)建立空間坐標(biāo)系,利用向量法求出平面的法向量,利用向量法結(jié)合二面角的余弦值求出F的位置即可得到結(jié)論.
解答 (Ⅰ)證明:∵AE⊥平面CDE,
∴AE⊥平面DE,AE⊥CD,
∵AE=1,AD=2,∴DE=$\sqrt{3}$,
∵CE=$\sqrt{7}$,CD=2,
∴CD2+DE2=3+4=7,即CD2+DE2=CE2,
∴△CDE是直角三角形,
則CD⊥DE,
∵DE∩AE=E,
∴CD⊥平面ADE;
∵CD?平面ABCD.
∴平面ABCD⊥平面ADE;
(Ⅱ)建立以D為坐標(biāo)原點(diǎn),DC,ED,垂直于平面CDE的直線分別為x,y,z軸的空間直角坐標(biāo)系如圖:
則A(0,-$\sqrt{3}$,1),E(0,-$\sqrt{3}$,0),C(2,0,0),D(0,0,0),B(2,-$\sqrt{3}$,1),
設(shè)$\overrightarrow{CF}$=t$\overrightarrow{CB}$=t(0,-$\sqrt{3}$,1)=(0,-$\sqrt{3}$t,t)(0≤t≤2),
則$\overrightarrow{DF}$=$\overrightarrow{DC}$+$\overrightarrow{CF}$=(2,0,0)+(0,-$\sqrt{3}$t,t)=(2,-$\sqrt{3}$t,t),
$\overrightarrow{DE}$=(0,-$\sqrt{3}$,0),
則設(shè)平面DEF的法向量為$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DF}=0}\\{\overrightarrow{n}•\overrightarrow{DE}=0}\end{array}\right.$,即$\left\{\begin{array}{l}{2x-\sqrt{3}ty+tz=0}\\{-\sqrt{3}y=0}\end{array}\right.$,即$\left\{\begin{array}{l}{2x+tz=0}\\{y=0}\end{array}\right.$,
令z=1,則x=-$\frac{t}{2}$,y=0,
即為$\overrightarrow{n}$=(-$\frac{t}{2}$,0,1),
平面AED的法向量為$\overrightarrow{m}$=(1,0,0),
若二面角A-DE-F的余弦值為$\frac{\sqrt{37}}{37}$,
則|cos<$\overrightarrow{m}$,$\overrightarrow{n}$>|=|$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$|=$\frac{|-\frac{t}{2}|}{\sqrt{(-\frac{t}{2})^{2}+1}}$=$\frac{\sqrt{37}}{37}$,
平方得$\frac{\frac{{t}^{2}}{4}}{\frac{{t}^{2}}{4}+1}=\frac{1}{37}$,即9t2=1,則t2=$\frac{1}{9}$,
則t=$\frac{1}{3}$,
即CF=$\frac{1}{3}$CB=$\frac{2}{3}$,
即點(diǎn)F在BC上的位置滿足CF=$\frac{2}{3}$,即可滿足條件.
點(diǎn)評(píng) 本題主要考查面面垂直判定以及二面角的求解,建立空間直角坐標(biāo)系,利用向量法進(jìn)行求解,綜合性較強(qiáng),運(yùn)算量較大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | -4 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $\frac{5}{4}$ | C. | $\frac{3}{2}$ | D. | $\frac{6}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com