設(shè)|
a
|=2
3
,|
b
|=3,
a
b
=-2.則|
a
-
b
|=
 
考點:平面向量數(shù)量積的運算
專題:平面向量及應(yīng)用
分析:利用向量數(shù)量積運算性質(zhì)即可得出.
解答: 解:∵|
a
|=2
3
,|
b
|=3,
a
b
=-2.
∴|
a
-
b
|=
a
2
+
b
2
-2
a
b
=
12+9-2×(-2)
=5,
故答案為:5.
點評:本題考查了向量數(shù)量積運算性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x焦點的直線交拋物線于A,B兩點,已知AB=8,O為坐標(biāo)原點,求:△OAB的重心的橫坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=ax2+20x+14(a>0)對任意實數(shù)t,在閉區(qū)間[t-1,t+1]上總存在兩實數(shù)x1,x2,使得|f(x1)-f(x2)|≥8成立,則實數(shù)a的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果cos2014φ-sin2014φ>2014(sin2014φ-cos2014φ),φ∈[0,2π),則φ的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

各項均為正數(shù)的數(shù)列{an}中,a1=1,Sn是數(shù)列{an}的前n項和,對任意n∈N*,有2Sn=2pan2+pan-p(p∈R).
(1)求數(shù)列{an}的通項公式;
(2)記bn=
2
an+2
+
an
,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

動圓M經(jīng)過雙曲線x2-
y2
3
=1的左焦點且與直線x=2相切,則圓心M的軌跡方程是(  )
A、y2=8x
B、y2=-8x
C、y2=4x
D、y2=-4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

找規(guī)律:
1
2   3   4
5   6   7   8   9
10  11  12  13  14   15   16

2015出現(xiàn)在第
 
行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,an+1=3an+2(n∈N+),且a10=8,則a4=( 。
A、
1
81
B、-
80
81
C、
1
27
D、-
26
27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=cos2x+cosx的最小值是( 。
A、-1
B、-
1
4
C、0
D、
3
4

查看答案和解析>>

同步練習(xí)冊答案