7.已知α∈(-$\frac{π}{2}$,0),cosα=$\frac{{\sqrt{5}}}{5}$.
(1)求sin2α的值;
(2)求$\frac{sinα+cosα}{sinα-cosα}$的值.

分析 (1)(2)根據(jù)同角三角函數(shù)關(guān)系式和二倍角即可求值.

解答 解:(1)∵$α∈(-\frac{π}{2},0),cosα=\frac{{\sqrt{5}}}{5}$
∴$sinα=-\frac{{2\sqrt{5}}}{5}$,
$sin2α=2sinαcosα=-\frac{4}{5}$
(2)由(1)可知tanα=$\frac{sinα}{cosα}$=-2,
那么:$\frac{sinα+cosα}{sinα-cosα}=\frac{tanα+1}{tanα-1}=\frac{1}{3}$

點(diǎn)評(píng) 本題主要考察了同角三角函數(shù)關(guān)系式和二倍角的計(jì)算,屬于基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知在等比數(shù)列{an}中,a4,a8是方程x2-8x+9=0的兩根,則a6為( 。
A.-3B.±3C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若集合A={x|x<3},B={x|x>0},則A∪B=( 。
A.{x|0<x<3}B.{x|x>0}C.{x|x<3}D.R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.某幾何體的三視圖如圖所示,則其體積為(  )
A.8B.10C.12D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.2016年是紅色長(zhǎng)征勝利80周年,某市電視臺(tái)舉辦紀(jì)念紅軍長(zhǎng)征勝利80周年知識(shí)問(wèn)答,宣傳長(zhǎng)征精神,首先在甲、乙、丙、丁四個(gè)不同的公園進(jìn)行支持簽名活動(dòng)
 公園 甲 乙 丙 丁
 獲得簽名人數(shù) 45 60 30 15
然后在各公園簽名的人中按分層抽樣的方式抽取10名幸運(yùn)之星回答問(wèn)題,從10個(gè)關(guān)于長(zhǎng)征的問(wèn)題中隨機(jī)抽取4個(gè)問(wèn)題讓幸運(yùn)之星回答,全部答對(duì)的幸運(yùn)之星獲得一份紀(jì)念品.
(Ⅰ)求此活動(dòng)軸個(gè)各公園幸運(yùn)之星的人數(shù)
(Ⅱ)若乙公園中每位幸運(yùn)之星對(duì)每個(gè)問(wèn)題答對(duì)的概率均為$\frac{\sqrt{2}}{2}$,求恰好2位幸運(yùn)之星獲得紀(jì)念品的概率
(Ⅲ)若幸運(yùn)之星小李對(duì)其中8個(gè)問(wèn)題能答對(duì),而另外2個(gè)問(wèn)題答不對(duì),記小李答對(duì)的問(wèn)題數(shù)為X,求X的分布列及數(shù)學(xué)期望E(X)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.拋物線y=$\frac{1}{8}$x2的焦點(diǎn)坐標(biāo)為(  )
A.($\frac{1}{32}$,0)B.(0,$\frac{1}{32}$)C.(0,4)D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知?jiǎng)狱c(diǎn)M到定點(diǎn)F(1,0)的距離與點(diǎn)M到定直線m:x=2的距離之比為$\frac{\sqrt{2}}{2}$
(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)設(shè)過(guò)定點(diǎn)A(0,2)的動(dòng)直線l(斜率存在)與C相交于P,Q兩點(diǎn),以線段PQ為直徑的圓,若定點(diǎn)F在此圓內(nèi),求出滿足條件的直線l的斜率范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知圓錐的高PO=4,底面半徑OB=2,E為母線PB的中點(diǎn),C為底面圓周上一點(diǎn),滿足OB⊥OC,F(xiàn)為弧BC上一點(diǎn),且∠BOF=$\frac{π}{3}$.
(1)求證EF∥平面POC;
(2)求三棱錐E-OCF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.如圖,O是坐標(biāo)原點(diǎn),M、N是單位圓上的兩點(diǎn),且分別在第一和第三象限,則$|\overrightarrow{OM}+\overrightarrow{ON}|$的范圍為[0.$\sqrt{2}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案