已知a=(1,2),b=(-2,n) (n>1),a與b的夾角是45°.
(1)求b;
(2)若c與b同向,且a與c-a垂直,求c.
(1) b=(-2,6) (2) (-1,3).
解析試題分析:(1)利用向量夾角公式可得關(guān)于n的方程,解出n即得向量b;
(2)由c與b同向,同向,可設(shè)c=λb (λ>0),利用向量垂直的充要條件可求得λ,代入即可求得c;
(1)a·b=2n-2,|a|=,|b|=,
∴cos 45°==,∴3n2-16n-12=0,∴n=6或n=- (舍),∴b=(-2,6).
(2)由(1)知,a·b=10,|a|2=5.又c與b同向,故可設(shè)c=λb (λ>0),(c-a)·a=0,
∴λb·a-|a|2=0,∴λ===,∴c=b=(-1,3).
考點:平面向量數(shù)量積的運算;利用數(shù)量積判斷兩向量的垂直關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,動點到兩點、的距離之和等于4.設(shè)點的軌跡為.
(1)求曲線的方程;
(2)設(shè)直線與交于、兩點,若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在原點,對稱軸為坐標(biāo)軸的橢圓C的一個焦點在拋物線的準(zhǔn)線上,且橢圓C過點.
(1)求橢圓C的方程;
(2)點A為橢圓C的右頂點,過點作直線與橢圓C相交于E,F(xiàn)兩點,直線AE,AF與直線分別交于不同的兩點M,N,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,函數(shù)
(1)求方程g(x)=0的解集;
(2)求函數(shù)f(x)的最小正周期及其單調(diào)增區(qū)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com