【題目】已知拋物線,過拋物線C的焦點F作互相垂直的兩條直線AB,CD,與拋物線C分別相交于A,B和C,D,點A,C在x軸上方.
(1)若直線AB的傾斜角為,求的值;
(2)設與的面積之和為S,求S的最小值.
科目:高中數(shù)學 來源: 題型:
【題目】某“雙一流”大學專業(yè)獎學金是以所學專業(yè)各科考試成績作為評選依據(jù),分為專業(yè)一等獎學金、專業(yè)二等獎學金及專業(yè)三等獎學金,且專業(yè)獎學金每個學生一年最多只能獲得一次.圖(1)是統(tǒng)計了該校年名學生周課外平均學習時間頻率分布直方圖,圖(2)是這名學生在年周課外平均學習時間段獲得專業(yè)獎學金的頻率柱狀圖.
(Ⅰ)求這名學生中獲得專業(yè)三等獎學金的人數(shù);
(Ⅱ)若周課外平均學習時間超過小時稱為“努力型”學生,否則稱為“非努力型”學生,列聯(lián)表并判斷是否有的把握認為該校學生獲得專業(yè)一、二等獎學金與是否是“努力型”學生有關?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種出口產(chǎn)品的關稅稅率,市場價格(單位:千元)與市場供應量(單位:萬件)之間近似滿足關系式:,其中、均為常數(shù).當關稅稅率為時,若市場價格為5千元,則市場供應量約為1萬件;當關稅稅率為時,若市場價格為7千元,則市場供應量約為2萬件.
(1)試確定、的值;
(2)市場需求量(單位:萬件)與市場價格近似滿足關系式:.當時,市場價格稱為市場平衡價格.當市場平衡價格不超過4千元時,試確定關稅稅率的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形,,側面底面,,,、分別為,的中點,點在線段上.
(1)若為的中點,求證:平面平面;
(2)求證:平面;
(3)若,求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在長方形中,,,點為線段上一動點,現(xiàn)將沿折起,使點在面內(nèi)的射影在直線上,當點從運動到,則點所形成軌跡的長度為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
如圖,已知平面QBC與直線PA均垂直于所在平面,且PA=AB=AC.
(Ⅰ)求證:PA∥平面QBC;
(Ⅱ)若,求二面角Q-PB-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xoy中,已知曲線C1:x2+y2=1,以平面直角坐標系xoy的原點O為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線:ρ(2cosθ-sinθ)=6.
(Ⅰ)將曲線C1上的所有點的橫坐標,縱坐標分別伸長為原來的、2倍后得到曲線C2,試寫出直線的直角坐標方程和曲線C2的參數(shù)方程.
(Ⅱ)在曲線C2上求一點P,使點P到直線l的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的部分圖象如圖所示:
(I)求的解析式及對稱中心坐標;
(Ⅱ)將的圖象向右平移個單位,再將橫坐標伸長到原來的2倍,縱坐標不變,最后將圖象向上平移1個單位,得到函數(shù)的圖象,求函數(shù)在上的單調(diào)區(qū)間及最值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com