已知△ABC中,內(nèi)角A、B、C所對邊的長分別為a、b、c,
(1)求角B的大小;
(2)若,a=2c,求b的值.
【答案】分析:(1) 利用以及兩角和的正切公式解方程求得tanB,再根據(jù) 0<B<π求出B 的大。
(2) 利用兩個向量的數(shù)量積的定義求出ac的值,再根據(jù)a=2c 求得a、c的值,余弦定理求得b 值.
解答:解:(1) 由 =,解得 tanB=,又  0<B<π,
∴B=
(2)∵,a=2c,∴ac•=4,ac=8,∴a=4,c=2.
∴b2==12,∴b=2
點評:本題啊孔查兩角和的正切公式,以及兩個向量的數(shù)量積的定義、余弦定理得應(yīng)用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知a,b,c成等比數(shù)列,cosB=
3
4

(Ⅰ)求
1
tanA
+
1
tanC
的值;
(Ⅱ)設(shè)
BA
BC
=
3
2
,求a+c
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中,內(nèi)角A,B,C的對邊長分別為a,b,c,滿足A<B<C,且sinA:sinB:sinC=5:7:k.
(1)已知k=11,求△ABC的最大角的余弦值;
(2)若a=10,且△ABC為鈍角三角形,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中,內(nèi)角A、B、C的對邊的邊長為a、b、c,且bcosC=(2a-c)cosB,則y=cos2A+cos2C的最小值為
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中,內(nèi)角A,B,C對邊分別為a,b,c,a=1, b=
3
, cosC=-
3
3

(1)求△ABC的面積;
(2)求sin(B-A)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中,內(nèi)角A、B、C所對邊長分別為a、b、c,A=
π6
,b=2acosB

(Ⅰ)求B;
(Ⅱ)若a=2.求△ABC的面積.

查看答案和解析>>

同步練習冊答案