20.在一次投籃訓(xùn)練中,甲、乙兩人各投一次,設(shè)p:“甲投中”,q:“乙投中”,則“至少一人沒(méi)有投中”可表示為( 。
A.(¬p)∨(¬q)B.p∨(¬q)C.(¬p)∧(¬q)D.p∨q

分析 根據(jù)題意,分析可得¬p與¬q的意義,又由“至少一人沒(méi)有投中”即“甲沒(méi)有投中”或“乙沒(méi)有投中”,由復(fù)合命題的意義即可得答案.

解答 解:根據(jù)題意,設(shè)p:“甲投中”,q:“乙投中”,則¬p表示甲沒(méi)有投中,¬q表示乙沒(méi)有投中,
“至少一人沒(méi)有投中”即“甲沒(méi)有投中”或“乙沒(méi)有投中”,
則“至少一人沒(méi)有投中”可表示為(¬p)∨(¬q);
故選:A.

點(diǎn)評(píng) 本題考查簡(jiǎn)易邏輯的性質(zhì)以及應(yīng)用,注意理解“至少一人沒(méi)有投中”的含義.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.“x<-2”是“($\frac{1}{2}$)${\;}^{{x}^{2}}$≥$\frac{1}{16}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.sin 110° cos40°-cos70°•sin40°=( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知$\overrightarrow$=(-3,4),$\overrightarrow{c}$=(1,-1)并與向量$\overrightarrow{a}$的關(guān)系為$\overrightarrow{a}$=$\overrightarrow$+2$\overrightarrow{c}$.
(1)求向量$\overrightarrow{a}$、$\overrightarrow{a}$+$\overrightarrow{c}$、$\overrightarrow{a}$-$\overrightarrow{c}$的坐標(biāo);
(2)求$\overrightarrow{a}$+$\overrightarrow{c}$與$\overrightarrow{a}$-$\overrightarrow{c}$夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(3,-1),則$\frac{|\overrightarrow{a}+\overrightarrow|}{\overrightarrow•(\overrightarrow{a}-\overrightarrow)}$等于( 。
A.-$\frac{5}{3}$B.-1C.1D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知向量$\overrightarrow{a}$=(3,1)$\overrightarrow$=(-6,k),若$\overrightarrow{a}$∥$\overrightarrow$,則k=( 。
A.-2B.-6C.18D.-18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.(1-x)(1+$\frac{1}{\sqrt{x}}$)8的展開(kāi)式中x-3的系數(shù)為(  )
A.30B.29C.28D.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.某小組共6名學(xué)生,其中女生3名,現(xiàn)選舉2人當(dāng)代表,至少有一名女生當(dāng)選,不同的選法共有(  )
A.15種B.12種C.21種D.30種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)命題p:x>m是2x-5>0的必要而不充分條件;設(shè)命題q:實(shí)數(shù)m滿足方程$\frac{{x}^{2}}{m-1}$$+\frac{{y}^{2}}{2-m}$=1表示雙曲線
(Ⅰ)若“p∧q”為真命題,求實(shí)數(shù)m的取值范圍
(Ⅱ)若“p∧q”為假命題,“p∨q”為真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案