10.冪函數(shù)f(x)的圖象經(jīng)過點(8,2),則f(x)的解析式 為f(x)=${x}^{\frac{1}{3}}$.

分析 設(shè)冪函數(shù)的解析式為f(x)=xα,利用圖象經(jīng)過點(8,2),代入解析式求出α的值即可.

解答 解:設(shè)冪函數(shù)為f(x)=xα,
因為圖象經(jīng)過點(8,2),
所以f(8)=8α=2,
解得α=$\frac{1}{3}$;
所以函數(shù)的解析式為f(x)=${x}^{\frac{1}{3}}$.
故答案為:f(x)=${x}^{\frac{1}{3}}$.

點評 本題考查了冪函數(shù)的概念與應用問題,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

20.等差數(shù)列{an}中,已知a1=21,a10=3.
(1)求{an}的通項公式;
(2)求此數(shù)列前11項和S11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.在某天的上午9:00~12:00時段,湛江一間商業(yè)銀行隨機收集了100位客戶在營業(yè)廳窗口辦理業(yè)務(wù)類型及用時量的信息,相關(guān)數(shù)據(jù)統(tǒng)計如表1與圖2所示.
一次辦理業(yè)務(wù)類型A型業(yè)務(wù)B型業(yè)務(wù)C型業(yè)務(wù)D型業(yè)務(wù)E型業(yè)務(wù)
平均用時量(分鐘/人)56.581215
已知這100位客戶中辦理型和型業(yè)務(wù)的共占50%(假定一人一次只辦一種業(yè)務(wù)).
(Ⅰ)確定圖2中x,y的值,并求隨機一位客戶一次辦理業(yè)務(wù)的用時量X的分布列與數(shù)學期望;
(Ⅱ)若某客戶到達柜臺時,前面恰有2位客戶依次辦理業(yè)務(wù)(第一位客戶剛開始辦理業(yè)務(wù)),且各客戶之間辦理的業(yè)務(wù)相互獨立,求該客戶辦理業(yè)務(wù)前的等候時間不超過13分鐘的概率.
(注:將頻率視為概率,參考數(shù)據(jù):5×35+6.5×15+8×23+12×17=660.5,352+152+2×35×23+2×35×15=4110,352+152+35×23=2255)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.不等式ax2+bx+c>0的解集是(1,2),則不等式cx2+bx+a>0的解集是{x|$\frac{1}{2}$<x<1}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.圓x2+y2-2x-4y+1=0的圓心到直線ax+y-1=0的距離為1,則a=( 。
A.-$\frac{4}{3}$B.-$\frac{3}{4}$C.0D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.若f(x)=|x+a|(a為常數(shù))在區(qū)間(-∞,-1)是減函數(shù),則a的取值范圍是a≤1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,且$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,當|$\overrightarrow{a}$-x$\overrightarrow$|取得最小值時,實數(shù)x的值為( 。
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知函數(shù)y=x2+2x+a(a∈R)的圖象如圖所示,則下列函數(shù)與它的圖象對應正確的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{x-a}$的圖象過點A(0,$\frac{3}{2}$),B(3,3)
(1)求函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)在(2,+∞)上的單調(diào)性,并用單調(diào)性的定義加以證明;
(3)若m,n∈(2,+∞)且函數(shù)f(x)在[m,n]上的值域為[1,3],求m+n的值.

查看答案和解析>>

同步練習冊答案