【題目】已知點(diǎn),點(diǎn)是橢圓上任意一點(diǎn),線段的垂直平分線交于點(diǎn),點(diǎn)的軌跡記為曲線.

(Ⅰ)求曲線的方程;

(Ⅱ)過(guò)的直線交曲線于不同的,兩點(diǎn),交軸于點(diǎn),已知,,求的值.

【答案】(1)(2)

【解析】試題分析:(Ⅰ)由題意知,,利用橢圓的定義,即可得到橢圓的標(biāo)準(zhǔn)方程.

(Ⅱ)由題意知,當(dāng)直線恰好過(guò)原點(diǎn),可求得.

當(dāng)直線不過(guò)原點(diǎn),設(shè)直線,得到,聯(lián)立方程組,利用根與系數(shù)的關(guān)系和韋達(dá)定理,得到.

試題解析:(Ⅰ)由題意知,

故由橢圓定義知,點(diǎn)的軌跡是以點(diǎn),為焦點(diǎn),長(zhǎng)軸為6,焦距為4的橢圓,從而長(zhǎng)半軸長(zhǎng)為,短半軸長(zhǎng)為,

∴曲線的方程為:.

(Ⅱ)由題意知,

若直線恰好過(guò)原點(diǎn),則,,

,則,

,,則

.

若直線不過(guò)原點(diǎn),設(shè)直線,

,,.

,,

,

,得,從而;

,得,從而;

.

聯(lián)立方程組得:整理得

,,

.

綜上所述,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,且橢圓上任意一點(diǎn)到左焦點(diǎn)的最大距離為,最小距離為.

(1)求橢圓的方程;

(2)過(guò)點(diǎn)的動(dòng)直線交橢圓兩點(diǎn),試問(wèn):在坐標(biāo)平面上是否存在一個(gè)定點(diǎn),使得以線段為直徑的圓恒過(guò)點(diǎn)?若存在,求出點(diǎn)的坐標(biāo):若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從“充分不必要條件”“必要不充分條件”“充要條件”“既不充分也不必要條件”中,選出適當(dāng)?shù)囊环N填空:

(1)記集合A{1,p,2},B{2,3},則“p3”是“ABB”的__________________;

(2)a1”是“函數(shù)f(x)|2xa|在區(qū)間上為增函數(shù)”的________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)你設(shè)計(jì)一個(gè)包裝盒.如圖所示,ABCD是邊長(zhǎng)為60 cm的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得A,B,C,D四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)正四棱柱形狀的包裝盒.E、FAB上,是被切去的一個(gè)等腰直角三角形斜邊的兩個(gè)端點(diǎn).設(shè)AEFBx(cm)

(1)若廣告商要求包裝盒的側(cè)面積S(cm2)最大,試問(wèn)x應(yīng)取何值?

(2)某廠商要求包裝盒的容積V(cm3)最大,試問(wèn)x應(yīng)取何值?并求出此時(shí)包裝盒的高與底面邊長(zhǎng)的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在三棱錐P﹣ABC中,D,E,F(xiàn)分別為棱PC,AC,AB的中點(diǎn),已知AD=PD,PA=6,BC=8,DF=5,求證:

(1)直線PA∥平面DEF;
(2)平面DEF⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)矩形ABCD(AB>AD)的周長(zhǎng)為24,把△ABC沿AC向△ADC折疊,AB折過(guò)去后交DC于點(diǎn)P,設(shè)AB=x,求△ADP的最大面積及相應(yīng)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知矩形和菱形所在平面互相垂直,如圖,其中,,點(diǎn)是線段的中點(diǎn).

(Ⅰ)試問(wèn)在線段上是否存在點(diǎn),使得直線平面?若存在,請(qǐng)證明平面,并求出的值;若不存在,請(qǐng)說(shuō)明理由;

(Ⅱ)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家具廠有方木料,五合板,準(zhǔn)備加工成書(shū)桌和書(shū)櫥出售.已知生產(chǎn)每張書(shū)桌需要方木料,五合板,生產(chǎn)每個(gè)書(shū)櫥需要方木料,五合板,出售一張書(shū)桌可獲利潤(rùn)元,出售一個(gè)書(shū)櫥可獲利潤(rùn)元.

1)如果只安排生產(chǎn)書(shū)桌,可獲利潤(rùn)多少?

2)如果只安排生產(chǎn)書(shū)櫥,可獲利潤(rùn)多少?

3)怎樣安排生產(chǎn)可使所得利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)). 

(Ⅰ)試判斷函數(shù)的零點(diǎn)個(gè)數(shù);

(Ⅱ)若函數(shù)上為增函數(shù),求整數(shù)的最大值.

(可能要用的數(shù)據(jù): , ).

查看答案和解析>>

同步練習(xí)冊(cè)答案