【題目】已知矩形和菱形所在平面互相垂直,如圖,其中,,點(diǎn)是線段的中點(diǎn).

(Ⅰ)試問在線段上是否存在點(diǎn),使得直線平面?若存在,請證明平面,并求出的值;若不存在,請說明理由;

(Ⅱ)求二面角的正弦值.

【答案】(1)見解析(2)

【解析】試題分析:(Ⅰ)連接,得,進(jìn)而得到直線平面,利用平行線的性質(zhì).

(Ⅱ)由(Ⅰ)知,進(jìn)而得到,得到,以為空間原點(diǎn),,分別為,,軸建立空間直角坐標(biāo)系

求得平面的一個(gè)法向量,平面的一個(gè)法向量,利用向量的夾角公式,即可求解二面角的大小.

試題分析:(Ⅰ)作的中點(diǎn),連接于點(diǎn),點(diǎn)即為所求的點(diǎn).

證明:連接,

的中點(diǎn),的中點(diǎn),

平面,平面,

∴直線平面.

,

,

.

(Ⅱ)由(Ⅰ)知

又面,面,,

所以.

,.

為空間原點(diǎn),,,分別為,,軸建立空間直角坐標(biāo)系

,

為正三角形,,

,,,,

,,

設(shè)平面的一個(gè)法向量,則由可得

,則.

設(shè)平面的一個(gè)法向量,則由,可得

,則.

,

設(shè)二面角的平面角為,則,

∴二面角的正弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= sinωx+cosωx(ω>0)的圖象與x軸交點(diǎn)的橫坐標(biāo)構(gòu)成一個(gè)公差為 的等差數(shù)列,把函數(shù)f(x)的圖象沿x軸向左平移 個(gè)單位,得到函數(shù)g(x)的圖象.若在區(qū)間[0,π]上隨機(jī)取一個(gè)數(shù)x,則事件“g(x)≥ ”發(fā)生的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)三個(gè)正實(shí)數(shù)a , b , c 滿足 ,求證:a , b , c一定是某一個(gè)三角形的三條邊的長;

②設(shè)n個(gè)正實(shí)數(shù) a1,a2,...an 滿足不等式 (其中 ),求證: a1,a2,...an 中任何三個(gè)數(shù)都是某一個(gè)三角形的三條邊的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),點(diǎn)是橢圓上任意一點(diǎn),線段的垂直平分線交于點(diǎn),點(diǎn)的軌跡記為曲線.

(Ⅰ)求曲線的方程;

(Ⅱ)過的直線交曲線于不同的,兩點(diǎn),交軸于點(diǎn),已知,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=sin2x的圖象向左平移 個(gè)單位,再向上平移1個(gè)單位,所得圖象的函數(shù)解析式是(
A.y=2cos2x
B.y=2sin2x
C.
D.y=cos2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù),.

(1),設(shè),試證明存在唯一零點(diǎn)并求的最大值;

(2)若關(guān)于的不等式的解集中有且只有兩個(gè)整數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sinxcosx+2 cos2x﹣
(1)求函數(shù)f(x)的最小正周期和單調(diào)減區(qū)間;
(2)已知△ABC的三個(gè)內(nèi)角A,B,C的對邊分別為a,b,c,其中a=7,若銳角A滿足f( )= ,且sinB+sinC= ,求bc的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處的切線與直線垂直(其中為自然對數(shù)的底數(shù)).

(I)求的解析式及單調(diào)遞減區(qū)間;

(II)若存在 ,使函數(shù)成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,AD∥BC,AB⊥AD,AB⊥PA,BC=2AB=2AD=4BE,平面PAB⊥平面ABCD,
(Ⅰ)求證:平面PED⊥平面PAC;
(Ⅱ)若直線PE與平面PAC所成的角的正弦值為 ,求二面角A﹣PC﹣D的平面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案