精英家教網 > 高中數學 > 題目詳情

已知a>0且a≠1,函數f(x)=logax,x∈[2,4]的值域為[m,m+1],求a的值.

解:①當a>1時,f(x)=logax為增函數,則
,解得a=2;
②當0<a<1時,f(x)=logax為減函數,則
,解得a=
綜上a=或a=2.
分析:分a>1,0<a<1兩種情況討論f(x)的單調性,由單調性可得f(x)在[2,4]上的最大值、最小值,從而由值域得到方程組,解出即可.
點評:本題考查對數函數的單調性及其應用,考查函數在閉區(qū)間上的最值問題,考查分類討論思想,屬中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知a>0且a≠1,設p:函數y=ax在R上單調遞增,q:設函數y=
2x-2a,(x≥2a)
2a,(x<2a)
,函數y≥1恒成立,若p∧q為假,p∨q為真,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•普陀區(qū)二模)已知a>0且a≠1,函數f(x)=loga(x+1),g(x)=loga
11-x
,記F(x)=2f(x)+g(x)
(1)求函數F(x)的定義域D及其零點;
(2)若關于x的方程F(x)-m=0在區(qū)間[0,1)內有解,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a>0且a≠1,則使方程loga(x-ak)=loga2(x2-a2)有解時的k的取值范圍為
(-∞,-1)∪(0,1)
(-∞,-1)∪(0,1)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a>0且a≠1,函數f(x)=loga(x+1),g(x)=loga
11-x
,記F(x)=2f(x)+g(x)
(1)求函數F(x)的定義域D及其零點;
(2)試討論函數F(x)在定義域D上的單調性;
(3)若關于x的方程F(x)-2m2+3m+5=0在區(qū)間[0,1)內僅有一解,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源:普陀區(qū)二模 題型:解答題

已知a>0且a≠1,函數f(x)=loga(x+1),g(x)=loga
1
1-x
,記F(x)=2f(x)+g(x)
(1)求函數F(x)的定義域D及其零點;
(2)若關于x的方程F(x)-m=0在區(qū)間[0,1)內有解,求實數m的取值范圍.

查看答案和解析>>

同步練習冊答案