14.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C1的極坐標(biāo)方程為ρ=2sinθ,正方形ABCD的頂點(diǎn)都在C1上,且依次按逆時(shí)針?lè)较蚺帕校c(diǎn)A的極坐標(biāo)為($\sqrt{2}$,$\frac{π}{4}$).
(1)求點(diǎn)C的直角坐標(biāo);
(2)若點(diǎn)P在曲線C2:x2+y2=4上運(yùn)動(dòng),求|PB|2+|PC|2的取值范圍.

分析 (1)求出A的直角坐標(biāo),根據(jù)A,C關(guān)于y軸對(duì)稱,求出C的坐標(biāo)即可;
(2)設(shè)P(x,y),x=2cosθ,y=2sinθ,求出|PB|2+|PC|2的解析式,根據(jù)三角函數(shù)的性質(zhì)求出其范圍即可.

解答 解:(1)∵點(diǎn)A的極坐標(biāo)為($\sqrt{2}$,$\frac{π}{4}$),
∴點(diǎn)A的直角坐標(biāo)是(1,1),
由A,C關(guān)于y軸對(duì)稱,則C(-1,1);
(2)易得B(0,2),C(-1,1),
曲線C1:ρ=2sinθ的直角坐標(biāo)方程是:x2+(y-1)2=1,
設(shè)P(x,y),x=2cosθ,y=2sinθ,
則|PB|2+|PC|2
=x2+(y-2)2+(x+1)2+(y-1)2
=2x2+2y2-6y+2x+6
=14+2(x-3y)
=14+2(2cosθ-6sinθ)
=14+4(cosθ-3sinθ)
=14+4$\sqrt{10}$cos(θ+φ),
故|PB|2+|PC|2∈[14-4$\sqrt{10}$,14+4$\sqrt{10}$].

點(diǎn)評(píng) 本題考查了極坐標(biāo)以及直角坐標(biāo)的轉(zhuǎn)化,考查三角函數(shù)的性質(zhì)以及對(duì)稱思想,轉(zhuǎn)化思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知數(shù)列{an}前n項(xiàng)和為Sn,等差數(shù)列{bn}的前n項(xiàng)和為Tn,且1+3Sn=an+1,a5=256,bn+bn+1=${log}_{\sqrt{2}}$an
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求證:bnbn+1≥Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}\frac{2}{x},x>1\\ 9x{(1-x)^2},x≤1\end{array}$,若函數(shù)g(x)=f(x)-k僅有一個(gè)零點(diǎn),則k的取值范圍是(-∞,0)∪($\frac{4}{3}$,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.等差數(shù)列{an}的前n項(xiàng)和為Sn,且S2=4,S4=16,數(shù)列{bn}滿足bn=an+an+1,則數(shù)列{bn}的前9和T9=180.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在平行四邊形ABCD 中,$∠A=\frac{π}{3}$,邊AB、AD長(zhǎng)分別為2、1,若E、F分別是邊BC、CD上的點(diǎn),且滿足$\frac{{|{\overrightarrow{CE}}|}}{{|{\overrightarrow{CB}}|}}=\frac{{|{\overrightarrow{DF}}|}}{{|{\overrightarrow{DC}}|}}$,則$\overrightarrow{AE}•\overrightarrow{AF}$的取值范圍是[2,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.甲、乙兩人約定在6時(shí)到7時(shí)之間在某處會(huì)面,并約定先到者應(yīng)等候另一個(gè)人20分鐘,過(guò)時(shí)即可離去,求兩人能會(huì)面的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.為研究學(xué)生物理成績(jī)與數(shù)學(xué)成績(jī)是否相關(guān),某中學(xué)老師將一次考試中五名學(xué)生的數(shù)學(xué)、物理成績(jī)記錄如下表所示:
學(xué)生A1A2A3A4A5
數(shù)學(xué)(x分)8991939597
物理(y分)8789t9293
根據(jù)上表提供的數(shù)據(jù),經(jīng)檢驗(yàn)物理成績(jī)與數(shù)學(xué)成績(jī)呈線性相關(guān),且得到y(tǒng)關(guān)于x的線性回歸方程$\widehat{y}$=0.75+20.25,那么表中t的值為89.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.(1-x-5y)5的展開(kāi)式中不含x的項(xiàng)的系數(shù)和為( 。ńY(jié)果化成最簡(jiǎn)形式).
A.1024B.-1024C.1025D.-1028

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.定義在R上的單調(diào)函數(shù)f(x)滿足:f(x+y)=f(x)+f(y),若函數(shù)g(x)=f(a+sinx)+f(2cos2x-3)在(0,π)上有零點(diǎn),則a的取值范圍是[$\frac{7}{8}$,2].

查看答案和解析>>

同步練習(xí)冊(cè)答案