【題目】某種水果按照果徑大小可分為四類:標(biāo)準(zhǔn)果、優(yōu)質(zhì)果、精品果、禮品果.某采購商從采購的一批水果中隨機(jī)抽取個(gè),利用水果的等級(jí)分類標(biāo)準(zhǔn)得到的數(shù)據(jù)如下:

等級(jí)

標(biāo)準(zhǔn)果

優(yōu)質(zhì)果

精品果

禮品果

個(gè)數(shù)

10

30

40

20

(1)若將頻率是為概率,從這個(gè)水果中有放回地隨機(jī)抽取個(gè),求恰好有個(gè)水果是禮品果的概率.(結(jié)果用分?jǐn)?shù)表示)

(2)用樣本估計(jì)總體,果園老板提出兩種購銷方案給采購商參考.

方案:不分類賣出,單價(jià)為.

方案:分類賣出,分類后的水果售價(jià)如下:

等級(jí)

標(biāo)準(zhǔn)果

優(yōu)質(zhì)果

精品果

禮品果

售價(jià)(元/kg)

16

18

22

24

從采購單的角度考慮,應(yīng)該采用哪種方案?

(3)用分層抽樣的方法從這個(gè)水果中抽取個(gè),再從抽取的個(gè)水果中隨機(jī)抽取個(gè),表示抽取的是精品果的數(shù)量,求的分布列及數(shù)學(xué)期望.

【答案】(1);(2)第一種方案;(3)詳見解析

【解析】

1)計(jì)算出從個(gè)水果中隨機(jī)抽取一個(gè),抽到禮品果的概率;則可利用二項(xiàng)分布的概率公式求得所求概率;(2)計(jì)算出方案單價(jià)的數(shù)學(xué)期望,與方案的單價(jià)比較,選擇單價(jià)較低的方案;(3)根據(jù)分層抽樣原則確定抽取的個(gè)水果中,精品果個(gè),非精品果個(gè);則服從超幾何分布,利用超幾何分布的概率計(jì)算公式可得到每個(gè)取值對(duì)應(yīng)的概率,從而可得分布列;再利用數(shù)學(xué)期望的計(jì)算公式求得結(jié)果.

(1)設(shè)從個(gè)水果中隨機(jī)抽取一個(gè),抽到禮品果的事件為,則

現(xiàn)有放回地隨機(jī)抽取個(gè),設(shè)抽到禮品果的個(gè)數(shù)為,則

恰好抽到個(gè)禮品果的概率為:

(2)設(shè)方案的單價(jià)為,則單價(jià)的期望值為:

從采購商的角度考慮,應(yīng)該采用第一種方案

(3)用分層抽樣的方法從個(gè)水果中抽取個(gè),則其中精品果個(gè),非精品果個(gè)

現(xiàn)從中抽取個(gè),則精品果的數(shù)量服從超幾何分布,所有可能的取值為:

;

的分布列如下:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)表示不大于實(shí)數(shù)的最大整數(shù),函數(shù),若關(guān)于的方程有且只有5個(gè)解,則實(shí)數(shù)的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的左、右頂點(diǎn)為,上、下頂點(diǎn)為,,記四邊形的內(nèi)切圓為.

(1)求圓的標(biāo)準(zhǔn)方程;

(2)已知圓的一條不與坐標(biāo)軸平行的切線交橢圓PM兩點(diǎn).

(i)求證:;

(ii)試探究是否為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某種細(xì)菌的適宜生長溫度為10℃~25℃,為了研究該種細(xì)菌的繁殖數(shù)量(單位:個(gè))隨溫度(單位:℃)變化的規(guī)律,收集數(shù)據(jù)如下:

溫度/℃

12

14

16

18

20

22

24

繁殖數(shù)量/個(gè)

20

25

33

27

51

112

194

對(duì)數(shù)據(jù)進(jìn)行初步處理后,得到了一些統(tǒng)計(jì)量的值,如下表所示:

18

66

3.8

112

4.3

1428

20.5

其中,.

(1)請(qǐng)繪出關(guān)于的散點(diǎn)圖,并根據(jù)散點(diǎn)圖判斷哪一個(gè)更適合作為該種細(xì)菌的繁殖數(shù)量關(guān)于溫度的回歸方程類型(給出判斷即可,不必說明理由);

(2)根據(jù)(1)的判斷結(jié)果及表格數(shù)據(jù),建立關(guān)于的回歸方程(結(jié)果精確到0.1);

(3)當(dāng)溫度為25℃時(shí),該種細(xì)菌的繁殖數(shù)量的預(yù)報(bào)值為多少?

參考公式:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二成估計(jì)分別為,.

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國南宋數(shù)學(xué)家楊輝1261年所著的《詳解九章算法》一書里出現(xiàn)了如圖所示的表,即楊輝三角,這是數(shù)學(xué)史上的一個(gè)偉大成就,在“楊輝三角”中,第行的所有數(shù)字之和為,若去除所有為1的項(xiàng),依次構(gòu)成數(shù)列2,3,3,4,6,4,5,10,10,5,…,則此數(shù)列的前15項(xiàng)和為( )

A. 110B. 114C. 124D. 125

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在小正方形邊長為1的網(wǎng)格中畫出了某多面體的三視圖,則該多面體的外接球表面積為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓,拋物線的頂點(diǎn)為,準(zhǔn)線的方程為為拋物線上的動(dòng)點(diǎn),過點(diǎn)作圓的兩條切線與軸交于.

(Ⅰ)求拋物線的方程;

(Ⅱ)若,求△面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知分別為雙曲線的左、右焦點(diǎn),點(diǎn)P是以為直徑的圓與C在第一象限內(nèi)的交點(diǎn),若線段的中點(diǎn)QC的漸近線上,則C的兩條漸近線方程為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定橢圓.稱圓心在原點(diǎn)O,半徑為的圓是橢圓C準(zhǔn)圓.若橢圓C的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到F的距離為

(1)求橢圓C的方程和其準(zhǔn)圓方程;

(2)點(diǎn)P是橢圓C準(zhǔn)圓上的一個(gè)動(dòng)點(diǎn),過動(dòng)點(diǎn)P作直線,使得與橢圓C都只有一個(gè)交點(diǎn),試判斷是否垂直?并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案