【題目】如圖,已知橢圓的左、右頂點為,,上、下頂點為,記四邊形的內(nèi)切圓為.

(1)求圓的標(biāo)準(zhǔn)方程;

(2)已知圓的一條不與坐標(biāo)軸平行的切線交橢圓P,M兩點.

(i)求證:

(ii)試探究是否為定值.

【答案】(1);(2)(i)詳見解析;(ii)是定值.

【解析】

1)由已知可得:直線的方程為:,利用四邊形的內(nèi)切圓為可求得內(nèi)切圓的半徑,問題得解。

2)(i)設(shè)切線,聯(lián)立直線方程與橢圓方程可得:,即可求得,所以,問題得證。

(ii)①當(dāng)直線的斜率不存在時,,②當(dāng)直線的斜率存在時,設(shè)直線的方程為:,聯(lián)立直線方程與橢圓方程可得:,即可求得:,同理可得:,問題得解。

(1)因為,分別為橢圓的右頂點和上頂點,則,坐標(biāo)分別為,可得直線的方程為:

則原點O到直線的距離為,則圓的半徑,

故圓的標(biāo)準(zhǔn)方程為.

(2)(i)可設(shè)切線

將直線的方程代入橢圓可得,由韋達(dá)定理得:

,

與圓相切,可知原點O的距離,整理得,

,所以,故.

(ii)由

①當(dāng)直線的斜率不存在時,顯然,此時;

②當(dāng)直線的斜率存在時,設(shè)直線的方程為:

代入橢圓方程可得,則

,

同理,

.

綜上可知:為定值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=|2x-1|+|x+m|

l)當(dāng)m=l時,解不等式fx)≥3;

2)證明:對任意xR,2fx)≥|m+1|-|m|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了保障某種藥品的主要藥理成分在國家藥品監(jiān)督管理局規(guī)定的值范圍內(nèi),某制藥廠在該藥品的生產(chǎn)過程中,檢驗員在一天中按照規(guī)定每間隔2小時對該藥品進(jìn)行檢測,每天檢測4:每次檢測由檢驗員從該藥品生產(chǎn)線上隨機抽取20件產(chǎn)品進(jìn)行檢測,測量其主要藥理成分含量(單位:mg).根據(jù)生產(chǎn)經(jīng)驗,可以認(rèn)為這條藥品生產(chǎn)線正常狀態(tài)下生產(chǎn)的產(chǎn)品的其主要藥理成分含量服從正態(tài)分布.

1)假設(shè)生產(chǎn)狀態(tài)正常,記表示某次抽取的20件產(chǎn)品中其主要藥理成分含量在之外的藥品件數(shù),求(精確到0.001)的數(shù)學(xué)期望;

2)在一天內(nèi)四次檢測中,如果有一次出現(xiàn)了主要藥理成分含量在之外的藥品,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對本次的生產(chǎn)過程進(jìn)行檢查;如果在一天中,有連續(xù)兩次檢測出現(xiàn)了主要藥理成分含量在之外的藥品,則需停止生產(chǎn)并對原材料進(jìn)行檢測.

①下面是檢驗員在某一次抽取的20件藥品的主要藥理成分含量:

10.02

9.78

10.04

9.92

10.14

10.04

9.22

10.13

9.91

9.95

10.09

9.96

9.88

10.01

9.98

9.95

10.05

10.05

9.96

10.12

經(jīng)計算得,.其中為抽取的第件藥品的主要藥理成分含量,.用樣本平均數(shù)作為的估計值,用樣本標(biāo)準(zhǔn)差作為的估計值,利用估計值判斷是否需對本次的生產(chǎn)過程進(jìn)行檢查?

②試確定一天中需停止生產(chǎn)并對原材料進(jìn)行檢測的概率(精確到0.001).:若隨機變量Z服從正態(tài)分布,則,

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1、F2是橢圓C的左、右焦點,點在橢圓C上,且滿足.

1)求橢圓C的方程;

2)直線l:交橢圓CA、B兩點,線段AB的垂直平分線與x軸交于點Mt,0),求mt的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線的焦點為F,準(zhǔn)線為l,AC上一點,已知以F為圓心,FA為半徑的圓FlM.N.

1)若的面積為,求拋物線方程;

2)若A.M.F三點在同一直線m上,直線nm平行,且nC只有一個公共點,求坐標(biāo)原點到直線n、m距離的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓過點,且離心率.

1)求橢圓的方程;

2)直線的斜率為,直線與橢圓交于兩點,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)yfx)圖象的對稱軸和對稱中心;

(Ⅱ)若函數(shù),的零點為x1,x2,求cosx1x2)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種水果按照果徑大小可分為四類:標(biāo)準(zhǔn)果、優(yōu)質(zhì)果、精品果、禮品果.某采購商從采購的一批水果中隨機抽取個,利用水果的等級分類標(biāo)準(zhǔn)得到的數(shù)據(jù)如下:

等級

標(biāo)準(zhǔn)果

優(yōu)質(zhì)果

精品果

禮品果

個數(shù)

10

30

40

20

(1)若將頻率是為概率,從這個水果中有放回地隨機抽取個,求恰好有個水果是禮品果的概率.(結(jié)果用分?jǐn)?shù)表示)

(2)用樣本估計總體,果園老板提出兩種購銷方案給采購商參考.

方案:不分類賣出,單價為.

方案:分類賣出,分類后的水果售價如下:

等級

標(biāo)準(zhǔn)果

優(yōu)質(zhì)果

精品果

禮品果

售價(元/kg)

16

18

22

24

從采購單的角度考慮,應(yīng)該采用哪種方案?

(3)用分層抽樣的方法從這個水果中抽取個,再從抽取的個水果中隨機抽取個,表示抽取的是精品果的數(shù)量,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C經(jīng)過A5,3),B4,4)兩點,且圓心在x軸上.

1)求圓C的標(biāo)準(zhǔn)方程;

2)若直線l過點(52),且被圓C所截得的弦長為6,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案