已知數(shù)列{an}是以-15為首項,2為公差的等差數(shù)列,Sn是其前n項和,則數(shù)列{Sn}的最小項為第________項.

8
分析:根據(jù)等差數(shù)列的前n項和公式,由首項和公差的值,寫出Sn的通項公式,配方后即可求出數(shù)列{Sn}的最小項.
解答:由題意可知:
Sn=-15n+n(n-1)=n2-16n+64-64=(n-8)2-64,
當n=8時,Sn取最小值,
則數(shù)列{Sn}的最小項為第8項.
故答案為:8
點評:此題考查學(xué)生靈活運用等差數(shù)列的前n項和公式化簡求值,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是以4為首項的正數(shù)數(shù)列,雙曲線an-1y2-anx2=an-1an的一個焦點坐標為(0,
cn
)(n≥2)
,且c1=6,一條漸近線方程為y=
2
x

(1)求數(shù)列{cn}(n∈N*)的通項公式;
(2)試判斷:對一切自然數(shù)n(n∈N*),不等式
1
c1
+
2
c2
+
3
c3
+…+
n
cn
+
n
3•2n
2
3
是否恒成立?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8、已知數(shù)列{an}是以-15為首項,2為公差的等差數(shù)列,Sn是其前n項和,則數(shù)列{Sn}的最小項為第
8
項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8、已知數(shù)列{an}是以-2為公差的等差數(shù)列,Sn是其前n項和,若S7是數(shù)列{Sn}中的唯一最大項,則數(shù)列{an}的首項a1的取值范圍是
(12,14)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•浦東新區(qū)三模)已知數(shù)列{an}是以3為公差的等差數(shù)列,Sn是其前n項和,若S10是數(shù)列{Sn}中的唯一最小項,則數(shù)列{an}的首項a1的取值范圍是
(-30,-27)
(-30,-27)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•青島二模)已知數(shù)列{an}是以3為公差的等差數(shù)列,Sn是其前n項和,若S10是數(shù)列{Sn}中的唯一最小項,則數(shù)列{an}的首項a1的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊答案