【題目】已知拋物線C:y2=2px(p>0)的焦點為F,過F作垂直于x軸的直線交拋物線于A,B,兩點,△AOB的面積為8,直線l與拋物線C相切于Q點,P是l上一點(不與Q重合).

(1)求拋物線C的方程;
(2)若以線段PQ為直徑的圓恰好經(jīng)過F,求|PF|的最小值.

【答案】
(1)解:由已知可得:F的坐標為 ,|AB|=2p,

∴p=4,

∴拋物線方程為y2=8x;


(2)解:設Q(x0,y0),P(x1,y1

設直線為l:y﹣y0=k(x﹣x0),聯(lián)立方程

利用△=0化簡可得: ,

又∵ ,可得

∴直線l:y0y=4(x+x0),

, ,

,

∵y1y0=4(x0+x1),

∴x1x0+2(x0+x1)+4=(x1+2)(x0+2)=0,

∵x0>0,

∴x1+2=0,

∴x1=﹣2,

即點P是拋物線準線x=﹣2上的點

∴PF的最小值是4


【解析】(1)F的坐標為 ,根據(jù)三角形的面積即可求出p的值,問題得以解決;(2)設Q(x0 , y0),P(x1 , y1)設直線為l:y﹣y0=k(x﹣x0),根據(jù)韋達定理求出和向量的數(shù)量積的運算,即可求出x1的值,問題得以解決.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù),若在定義域內存在實數(shù),滿足,則稱為“類函數(shù)”.

(1)已知函數(shù),試判斷是否為“類函數(shù)”?并說明理由;

(2)設是定義在上的“類函數(shù)”,求是實數(shù)的最小值;

(3)若 為其定義域上的“類函數(shù)”,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,E是棱CC1的中點,F(xiàn)是側面BCC1B1內的動點,且A1F∥平面D1AE,則A1F與平面BCC1B1所成角的正切值t構成的集合是(

A.{t| }
B.{t| ≤t≤2}??
C.{t|2 }
D.{t|2 }

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以為極點, 軸的正半軸為極軸建立極坐標系,直線的參數(shù)方程為,曲線的極坐標方程為.

(1)寫出直線的直角坐標方程和曲線的普通方程;

(2)求直線與曲線的交點的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從1,2,3,4這4個數(shù)中,不放回地任意取兩個數(shù),兩個數(shù)都是奇數(shù)的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若以連續(xù)擲兩次骰子分別得到的點數(shù)m、n作為點P的坐標(m,n),求:
(1)點P在直線x+y=7上的概率;
(2)點P在圓x2+y2=25外的概率.
(3)將m,n,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)存在單調遞減區(qū)間,求實數(shù)的取值范圍;

(2)設是函數(shù)的兩個極值點,若,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓經(jīng)過點,離心率,直線的方程為.

求橢圓的方程;

是經(jīng)過右焦點的任一弦(不經(jīng)過點),設直線與直線相交于點,記, 的斜率為, , .問:是否存在常數(shù),使得?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知函數(shù)f(x)=sinx+ cosx(x∈R),先將y=f(x)的圖象上所有點的橫坐標縮短到原來的 倍(縱坐標不變),再將得到的圖象上所有點向右平行移動θ(θ>0)個單位長度,得到的圖象關于直線x= 對稱,則θ的最小值為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案