【題目】如圖,在三棱錐中, , , , .
(Ⅰ)求證;
(Ⅱ)求二面角的大;
(Ⅲ)求點(diǎn)到平面的距離.
【答案】(Ⅰ)略,(Ⅱ) ,(Ⅲ)
【解析】解法一
(Ⅰ)取中點(diǎn),連結(jié).
,
.
,
.
,
平面.
平面,
.
(Ⅱ), ,
.
又,
.
又,即,且,
平面.
取中點(diǎn).連結(jié).
, .
是在平面內(nèi)的射影,
.
是二面角的平面角.
在中, , , ,
.
二面角的大小為.
(Ⅲ)由(Ⅰ)知平面,
平面平面.
過(guò)作,垂足為.
平面平面,
平面.
的長(zhǎng)即為點(diǎn)到平面的距離.
由(Ⅰ)知,又,且,
平面.
平面,
.
在中, , ,
.
.
點(diǎn)到平面的距離為.
解法二
(Ⅰ), ,
.
又,
.
,
平面.
平面,
.
(Ⅱ)如圖,以為原點(diǎn)建立空間直角坐標(biāo)系.
則.
設(shè).
,
, .
取中點(diǎn),連結(jié).
, ,
, .
是二面角的平面角.
, , ,
.
二面角的大小為.
(Ⅲ),
在平面內(nèi)的射影為正的中心,且的長(zhǎng)為點(diǎn)到平面的距離.
如(Ⅱ)建立空間直角坐標(biāo)系.
,
點(diǎn)的坐標(biāo)為.
.
點(diǎn)到平面的距離為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從甲、乙兩種棉花中各抽測(cè)了25根棉花的纖維長(zhǎng)度(單位: ) 組成一個(gè)樣本,且將纖維長(zhǎng)度超過(guò)315的棉花定為一級(jí)棉花.設(shè)計(jì)了如下莖葉圖:
(1)根據(jù)以上莖葉圖,對(duì)甲、乙兩種棉花的纖維長(zhǎng)度作比較,寫(xiě)出兩個(gè)統(tǒng)計(jì)結(jié)論(不必計(jì)算);
(2)從樣本中隨機(jī)抽取甲、乙兩種棉花各2根,求其中恰有3根一級(jí)棉花的概率;
(3)用樣本估計(jì)總體,將樣本頻率視為概率,現(xiàn)從甲、乙兩種棉花中各隨機(jī)抽取1根,求其中一級(jí)棉花根數(shù)X的分布列及數(shù)學(xué)期望
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一輛汽車(chē)從市出發(fā)沿海岸一條筆直公路以每小時(shí)的速度向東均速行駛,汽車(chē)開(kāi)動(dòng)時(shí),在市南偏東方向距市且與海岸距離為的海上處有一快艇與汽車(chē)同時(shí)出發(fā),要把一份稿件交給這汽車(chē)的司機(jī).
(1)快艇至少以多大的速度行駛才能把稿件送到司機(jī)手中?
(2)在(1)的條件下,求快艇以最小速度行駛時(shí)的行駛方向與所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】扎花燈是中國(guó)一門(mén)傳統(tǒng)手藝,逢年過(guò)節(jié)時(shí)常常在大街小巷看到各式各樣的美麗花燈,F(xiàn)有一個(gè)花燈,它外圍輪廓是由兩個(gè)形狀完全相同的拋物線(xiàn)繞著它們自身的對(duì)稱(chēng)軸旋轉(zhuǎn)而來(lái)(如圖),花燈的下頂點(diǎn)為,上頂點(diǎn)為,米,在它的內(nèi)部放有一個(gè)半徑為米的球形燈泡,球心在軸上,且米。若球形燈泡的球心到四周輪廓上的點(diǎn)的最近距離是在下頂點(diǎn)處取到。建立適當(dāng)?shù)淖鴺?biāo)系可得拋物線(xiàn)方程為,則實(shí)數(shù)的取值范圍是_______
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】江蘇省淮陰中學(xué)科技興趣小組在計(jì)算機(jī)上模擬航天器變軌返回試驗(yàn).設(shè)計(jì)方案如圖,航天器運(yùn)行(按順時(shí)針?lè)较?/span>)的軌跡方程為,變軌(即航天器運(yùn)行軌跡由橢圓變?yōu)閽佄锞(xiàn))后返回的軌跡是以軸為對(duì)稱(chēng)軸、為頂點(diǎn)的拋物線(xiàn)的實(shí)線(xiàn)部分,降落點(diǎn)為.觀測(cè)點(diǎn)同時(shí)跟蹤航天器,試問(wèn):當(dāng)航天器在軸上方時(shí),觀測(cè)點(diǎn),測(cè)得離航天器的距離分別為多少時(shí),應(yīng)向航天器發(fā)出變軌指令?(變軌指令發(fā)出時(shí)航天器立即變軌)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線(xiàn)的參數(shù)方程為(為參數(shù)).以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,設(shè)直線(xiàn)的極坐標(biāo)方程為.
(1)求曲線(xiàn)和直線(xiàn)的普通方程;
(2)設(shè)為曲線(xiàn)上任意一點(diǎn),求點(diǎn)到直線(xiàn)的距離的最值.
【答案】(1), ;(2)最大值為,最小值為
【解析】試題分析:(1)根據(jù)參數(shù)方程和極坐標(biāo)化普通方程化法即易得結(jié)論的普通方程為;直線(xiàn)的普通方程為.(2)求點(diǎn)到線(xiàn)距離問(wèn)題可借助參數(shù)方程,利用三角函數(shù)最值法求解即可故設(shè), .即可得出最值
解析:(1)根據(jù)題意,由,得, ,
由,得,
故的普通方程為;
由及, 得,
故直線(xiàn)的普通方程為.
(2)由于為曲線(xiàn)上任意一點(diǎn),設(shè),
由點(diǎn)到直線(xiàn)的距離公式得,點(diǎn)到直線(xiàn)的距離為
.
∵ ,
∴ ,即 ,
故點(diǎn)到直線(xiàn)的距離的最大值為,最小值為.
點(diǎn)睛:首先要熟悉參數(shù)方程和極坐標(biāo)方程化普通方程的方法,第一問(wèn)基本屬于送分題所以務(wù)必抓住,對(duì)于第二問(wèn)可以總結(jié)為一類(lèi)題型,借助參數(shù)方程設(shè)點(diǎn)的方便轉(zhuǎn)化為三角函數(shù)最值問(wèn)題求解
【題型】解答題
【結(jié)束】
23
【題目】已知函數(shù),.
(1)解關(guān)于的不等式;
(2)若函數(shù)的圖象恒在函數(shù)圖象的上方,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為奇函數(shù),且相鄰兩對(duì)稱(chēng)軸間的距離為
(1)當(dāng)時(shí),求的單調(diào)遞減區(qū)間;
(2)將函數(shù)的圖象沿軸正方向向右平移個(gè)單位長(zhǎng)度,再把橫坐標(biāo)縮短為原來(lái)的(縱坐標(biāo)不變),得到函數(shù)的圖象,當(dāng)時(shí),求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(a∈R),若函數(shù)恰有5個(gè)不同的零點(diǎn),則的取值范圍是( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,點(diǎn)也為拋物線(xiàn)的焦點(diǎn).(1)若為橢圓上兩點(diǎn),且線(xiàn)段的中點(diǎn)為,求直線(xiàn)的斜率;
(2)若過(guò)橢圓的右焦點(diǎn)作兩條互相垂直的直線(xiàn)分別交橢圓于和,設(shè)線(xiàn)段的長(zhǎng)分別為,證明是定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com