如圖所示,已知,PA垂直圓O所在平面,AB是圓O的直徑,C是圓周上一點(diǎn).
(Ⅰ) 求證:平面PBC⊥平面PAC;
(Ⅱ)若BC=1,AB=
2
,PC=2,求二面角P-BC-A的平面角大。
考點(diǎn):二面角的平面角及求法,平面與平面垂直的判定
專題:空間位置關(guān)系與距離,空間角
分析:(Ⅰ)由已知條件得BC⊥PA,AC⊥BC,從而BC⊥平面PAC,由此能證明平面PBC⊥平面PAC.
(Ⅱ)由BC⊥平面PAC,知∠ACP是二面角P-BC-A的平面角,由此能求出二面角P-BC-A的平面角大。
解答: (Ⅰ)證明:∵PA垂直圓O所在平面,BC?直圓O所在平面,
∴BC⊥PA,
∵AB是圓O的直徑,∴AC⊥BC,
∵PA∩AC=A,
∴BC⊥平面PAC,
∵BC?平面PBC,
∴平面PBC⊥平面PAC.
(Ⅱ)解:由(Ⅰ)知BC⊥平面PAC,
∴AC⊥BC,PC⊥BC,
∴∠ACP是二面角P-BC-A的平面角,
∵BC=1,AB=
2
,PC=2,AB是圓O的直徑,
∴AC=
AB2-BC2
=
2-1
=1,
∵PA垂直圓O所在平面,∴PA⊥AC,
∴cos∠ACP=
AC
PC
=
1
2
,
∴∠ACP=60°,
∴二面角P-BC-A的平面角大小為60°.
點(diǎn)評:本題考查平面與平面垂直的證明,考查二面角的平面角的求法,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={(x,y)|
2x-y+2≥0
x-2y+1≤0
x+y-2≤0
},B={(x,y)|x2+(y-1)2≤m},若A⊆B,則m的取值范圍是(  )
A、m≥1
B、m≥
2
C、m≥2
D、m≥
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

α、β、γ表示不同平面,m、n表示不同直線,則下列說法中可以判定α∥β的是( 。
①α⊥γ,β⊥γ;
②由α內(nèi)不共線的三點(diǎn)作平面β的垂線,各點(diǎn)與垂足間線段的長度都相等;
③m∥n,m⊥α,n⊥β;
④m、n是α內(nèi)兩條直線,且m∥β,n∥β.
A、①②B、②C、③④D、③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1中,E是A1B1的中點(diǎn),則異面直線AD1與CE所成的角為( 。
A、
π
6
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知C1
x2
a2
+
y2
b2
=1(a>b>0,x≥0)和曲線C2:x2+y2=r2(x≥0)都經(jīng)過點(diǎn)A(0,-1),且曲線C1所在的圓錐曲線的離心率為
6
3

(Ⅰ)求曲線C1和曲線C2的方程;
(Ⅱ)設(shè)B,C兩點(diǎn)分別在曲線C1,C2上,且均與點(diǎn)A不重合,k1,k2分別為直線AB,AC的斜率,且k2=3k1
①問直線BC是否過定點(diǎn)?若過定點(diǎn),求出定點(diǎn)坐標(biāo);若不過定點(diǎn),請說明理由;
②求∠BAC的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直三棱柱ABC-A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分別是A1B1,A1A的中點(diǎn);
(1)求
BN
的長;
(2)求cos<
BA1
,
CB1
>的值;
(3)求證:A1B⊥C1M.
(4)求CB1與平面A1ABB1所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(2x+
π
6
)cos2x-
1
2

(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)將函數(shù)f(x)的圖象向右平移
π
8
個單位,再將圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,若關(guān)于x的方程g(x)-k=0在區(qū)間[0,
π
2
]上有解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn),點(diǎn)A是上頂點(diǎn),點(diǎn)P(1,
3
2
)在橢圓上,且|PF1|+|PF2|=4.
(Ⅰ)求橢圓的方程;
(Ⅱ)若圓C的圓心在y軸上,且與直線AF2及x軸均相切,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C1:x2=2py(p>0)與橢圓C2
x2
a2
+
y2
b2
=1(a>b>0)在第一象限的公共點(diǎn)為A(2
2
,1),設(shè)拋物線C1的焦點(diǎn)為F,橢圓C2的左、右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0),△F1F2F的面積為6.
(Ⅰ)求拋物線C1和橢圓C2的方程;
(Ⅱ)設(shè)A1,A2為橢圓C2的左、右頂點(diǎn),P為橢圓C2上異于A1,A2的任意一點(diǎn),直線l:x=
a2
c
,l與直線A1P,A2P分別交于點(diǎn)M,N,試探究:在x軸上是否存在定點(diǎn)D,使得以線段MN為直徑的圓恒過點(diǎn)D,若存在,請求出點(diǎn)D的坐標(biāo),若不存在,請說明理由;
(Ⅲ)推廣(Ⅱ),得橢圓的一般性的正確命題,據(jù)此類比,得到雙曲線的一般性正確命題,請直接寫出這個雙曲線的正確命題(不必證明).

查看答案和解析>>

同步練習(xí)冊答案