【題目】給出下列命題:

①向量的長度與向量的長度相等;

②向量平行,則的方向相同或相反;

③兩個(gè)有共同起點(diǎn)而且相等的向量,其終點(diǎn)必相同;

④兩個(gè)有公共終點(diǎn)的向量,一定是共線向量;

⑤向量與向量是共線向量,則點(diǎn)必在同一條直線上.

其中不正確命題的序號(hào)是________

【答案】②④⑤

【解析】

結(jié)合平面向量的性質(zhì),對(duì)5個(gè)命題逐個(gè)分析,可選出答案.

向量是相反向量,它們的模長相等,即①正確;

零向量與任何向量平行,若向量中恰有一個(gè)為零向量,則它們的方向不滿足題意,即②錯(cuò)誤;

對(duì)于相等向量,若它們有共同的起點(diǎn),則它們終點(diǎn)也相同,即③正確;

兩個(gè)有公共終點(diǎn)的向量,若它們的起點(diǎn)和終點(diǎn)不在一條直線上,則它們不共線,即④錯(cuò)誤;

因?yàn)橄蛄靠梢云揭?/span>,所以共線向量中,不一定在同一條直線上,即⑤錯(cuò)誤.

故答案為:②④⑤.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的幾何體為一簡單組合體在底面,,平面,,

(1)求證:平面平面

(2)求該組合體的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).

1)求的值;

2)判斷函數(shù)的單調(diào)性,并用定義證明;

3)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩點(diǎn)

(1)求過AB中點(diǎn),且在兩坐標(biāo)軸上截距相等的直線的方程;

(2)求過原點(diǎn),且AB兩點(diǎn)到該直線距離相等的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的周期是.

1)求的單調(diào)遞增區(qū)間及對(duì)稱軸方程;

2)求上的最值及其對(duì)應(yīng)的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 如圖是正方體的平面展開圖在這個(gè)正方體中

①BM∥平面DE;②CN∥平面AF;③平面BDM∥平面AFN;④平面BDE∥平面NCF.

以上四個(gè)命題中正確命題的序號(hào)是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)業(yè)合作社生產(chǎn)了一種綠色蔬菜共噸,如果在市場(chǎng)上直接銷售,每噸可獲利萬元;如果進(jìn)行精加工后銷售,每噸可獲利萬元,但需另外支付一定的加工費(fèi),總的加工(萬元)與精加工的蔬菜量(噸)有如下關(guān)系:設(shè)該農(nóng)業(yè)合作社將(噸)蔬菜進(jìn)行精加工后銷售,其余在市場(chǎng)上直接銷售,所得總利潤(扣除加工費(fèi))為(萬元).

(1)寫出關(guān)于的函數(shù)表達(dá)式;

(2)當(dāng)精加工蔬菜多少噸時(shí),總利潤最大,并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求的定義域;

(2)判斷的奇偶性并給予證明;

(3)求關(guān)于x的不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩隊(duì)學(xué)生參加“知識(shí)聯(lián)想”搶答賽,比賽規(guī)則:①主持人依次給出兩次提示,第一次提示后答對(duì)得2分,第二次提示后答對(duì)得1分,沒搶到或答錯(cuò)者不得分;②主持人給出第一個(gè)提示后開始搶答,第一輪搶答出錯(cuò)失去第二輪答題資格;③每局比賽分兩輪,若第一輪搶答者給出正確答案,則此局比賽結(jié)束,若第一輪答題者答錯(cuò),主持人提示后另一隊(duì)直接答題。如果甲、乙兩隊(duì)搶到答題權(quán)機(jī)會(huì)均等,并且勢(shì)均力敵,第一個(gè)提示后答對(duì)概率均為;第二個(gè)提示后答對(duì)概率均為為甲隊(duì)在一局比賽中的分.

(1)求甲在一局比賽中得分的分布列;

(2)若比賽共4局,求甲4局比賽中至少得6分的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案