13.已知命題p:?x∈(0,+∞),3x-cosx>0,則下列敘述正確的是(  )
A.¬p:?x∈(0,+∞),3x-cosx≤0B.¬p:?x∈(0,+∞),3x-cosx<0
C.¬p:?x∈(-∞,0],3x-cosx≤0D.¬p是假命題

分析 根據(jù)已知中原命題,寫出命題的否定,并判斷其真假,可得答案.

解答 解:∵命題p:?x∈(0,+∞),3x-cosx>0,
∴命題p為:?x∈(0,+∞),3x-cosx≤0;
當(dāng)x>0時,3x>1,-1≤cosx≤1,
∴3x-cosx>0,
故p是真命題,即?p是假命題.
故選:D

點評 本題以命題的真假判斷與應(yīng)用為載體,考查了復(fù)合命題,全稱命題,分類討論思想,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)F1,F(xiàn)2是橢圓$\frac{x^2}{a^2}+\frac{y^2}{25}=1(a<5)$的兩個焦點,且|F1F2|=8,弦AB過點F2,則△ABF1的周長為( 。
A.12B.20C.2$\sqrt{41}$D.4$\sqrt{41}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x2-1)=logm$\frac{x^2}{{2-{x^2}}}$.
(1)求f(x)的解析式并判斷f(x)的奇偶性;
(2)解關(guān)于 x的不等式 f(x)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若函數(shù)f(x)滿足f(3x+2)=9x+8,則f(x)的解析式是(  )
A.f(x)=9x+8B.f(x)=3x+2
C.f(x)=-3x-4D.f(x)=3x+2或f(x)=-3x-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知直線l過點(3,2),且與兩條坐標(biāo)軸圍成一個等腰直角三角形,則直線l的方程為x-y-1=0或x+y-5=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在△ABC中,角A,B,C所對的邊分別為a,b,c(a≥b),$sin({\frac{π}{3}-A})=sinB$,$asinC=\sqrt{3}sinA$,則a+b的最大值為( 。
A.2B.3C.$2\sqrt{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某工廠第三年的產(chǎn)量比第一年的產(chǎn)量增加20%,若每年的平均增長率相同(設(shè)為x),則以下結(jié)論正確的是( 。
A.x=10%B.x<10%
C.x>10%D.x的大小由第一年的產(chǎn)量決定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知集合A中只含有1,a2兩個元素,則實數(shù)a不能取的值為±1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)y=f(x)上任一點(x0,f(x0))處的切線斜率$k=({{x_0}-2}){({{x_0}+1})^2}$,則該函數(shù)的單調(diào)遞減區(qū)間為( 。
A.[-1,+∞)B.(-∞,2]C.(-∞,-1),(1,2)D.[2,+∞)

查看答案和解析>>

同步練習(xí)冊答案