已知函數(shù)f(x)是定義在R上的以4為周期的函數(shù),”當(dāng)x∈(-1,3]時(shí),f(x)=
1-x2
,x∈(-1,1]
t(1-|x-2|),x∈(1,3]
其中t>0.若函數(shù)y=
f(x)
x
-
1
5
的零點(diǎn)個(gè)數(shù)是5,則t的取值范圍為( 。
分析:由函數(shù)y=
f(x)
x
-
1
5
的零點(diǎn)個(gè)數(shù)是5,可得函數(shù)y=f(x)的圖象與直線y=
1
5
x有5個(gè)交點(diǎn),數(shù)形結(jié)合可得點(diǎn)A(2,t) 在直線y=
1
5
x的上方,點(diǎn)B(6,t)在
y=
1
5
x的下方,故有 t>2×
1
5
,且 t<6×
1
5
,由此解得t的范圍.
解答:解:如圖所示:當(dāng)-1<x≤1時(shí),f(x)=
1-x2
 表示一個(gè)以原點(diǎn)O(0,0)為圓心,
半徑等于1的半圓.
當(dāng) 1<x≤3時(shí),f(x)=
t(x-1) ,1<x≤2
t(3-x) ,2<x≤3
,表示兩條線段.
再由函數(shù)y=
f(x)
x
-
1
5
的零點(diǎn)個(gè)數(shù)是5,可得函數(shù)y=f(x)的圖象與直線y=
1
5
x有5個(gè)交點(diǎn),
由題意可得,點(diǎn)A(2,t) 在直線y=
1
5
x的上方,點(diǎn)B(6,t)在y=
1
5
x的下方,
故有 t>2×
1
5
,且 t<6×
1
5
,解得t的范圍為 (
2
5
,
6
5
),
故選B.
點(diǎn)評(píng):本題主要考查函數(shù)的零點(diǎn)與方程的根的關(guān)系,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2x+2-x
2
,g(x)=
2x-2-x
2
,
(1)計(jì)算:[f(1)]2-[g(1)]2;
(2)證明:[f(x)]2-[g(x)]2是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=x+
a
x
的定義域?yàn)椋?,+∞),且f(2)=2+
2
2
.設(shè)點(diǎn)P是函數(shù)圖象上的任意一點(diǎn),過(guò)點(diǎn)P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求a的值.
(2)問(wèn):|PM|•|PN|是否為定值?若是,則求出該定值;若不是,請(qǐng)說(shuō)明理由.
(3)設(shè)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)
是f(x)圖象上的兩點(diǎn),橫坐標(biāo)為
1
2
的點(diǎn)P滿足2
OP
=
OM
+
ON
(O為坐標(biāo)原點(diǎn)).
(Ⅰ)求證:y1+y2為定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn為數(shù)列{an}的前n項(xiàng)和,若Tn<m(Sn+1+1)對(duì)一切n∈N*都成立,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)是f(x)圖象上的兩點(diǎn),且x1+x2=1.
(1)求證:y1+y2為定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,N≥2),求Sn;
(3)在(2)的條件下,若an=
1
6
 ,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn為數(shù)列{an}的前n項(xiàng)和.求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直線y=m與兩個(gè)相鄰函數(shù)的交點(diǎn)為A,B,若m變化時(shí),AB的長(zhǎng)度是一個(gè)定值,則AB的值是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案