直線方程為cosα•x+sinα•y+2=0,α∈(
π
2
,π),則直線的傾斜角為(  )
分析:求出直線的斜率,根據(jù)斜率與傾斜角的關(guān)系可得結(jié)論.
解答:解:直線方程為cosα•x+sinα•y+2=0的斜率為-
cosα
sinα
=tan(α-
π
2
),
∵α∈(
π
2
,π),
∴α-
π
2
∈(0,
π
2
),
∴直線的傾斜角為α-
π
2
,
故選B.
點評:本題考查直線的斜率,正確運用斜率與傾斜角的關(guān)系是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知在平面直角坐標系xoy中,圓C的參數(shù)方程為
x=
3
+3cosθ
y=1+3sinθ
(θ為參數(shù)),以ox為極軸建立極坐標系,直線l的極坐標方程為ρcos(θ+
π
6
)
=0則圓C截直線l所得的弦長為
4
2
4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A.選修4-1:幾何證明選講
如圖,直角△ABC中,∠B=90°,以BC為直徑的⊙O交AC于點D,點E是AB的中點.
求證:DE是⊙O的切線.
B.選修4-2:矩陣與變換
已知二階矩陣A有特征值-1及其對應(yīng)的一個特征向量為
1
-4
,點P(2,-1)在矩陣A對應(yīng)的變換下得到點P′(5,1),求矩陣A.
C.選修4-4:坐標系與參數(shù)方程
在直角坐標系中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系.已知直線l的極坐標方程為ρcos(θ-
π
4
)=
2
,曲線C的參數(shù)方程為
x=2cosα
y=sinα
(α為參數(shù)),求曲線C截直線l所得的弦長.
D.選修4-5:不等式選講
已知a,b,c都是正數(shù),且abc=8,求證:log2(2+a)+log2(2+b)+log2(2+c)≥6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•崇明縣二模)已知直線l的極坐標方程為ρcos(θ-
π
4
)=
2
2
,則極點到這條直線的距離等于
2
2
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•深圳一模)請從下面兩題中選做一題,如果兩題都做,以第一題的得分為最后得分.
(1)在極坐標系中,過圓ρ=4cosθ的圓心,且垂直于極軸的直線方程為
ρcosθ=2
ρcosθ=2

(2)如圖,AB為⊙O的直徑,弦AC、BD交于點P,若AB=3,CD=1,則sin∠APD=
2
2
3
2
2
3

查看答案和解析>>

同步練習(xí)冊答案