【題目】已知函數(shù)f(x)是定義在(-∞,+∞)上的奇函數(shù),若對(duì)于任意的實(shí)數(shù)x≥0,都有f(x+2)=f(x),且當(dāng)x∈[0,2)時(shí),f(x)=log2(x+1),則f(-2 015)+f(2 016)的值為________

【答案】-1.

【解析】分析:利用函數(shù)的奇偶性以及函數(shù)的周期性轉(zhuǎn)化求解即可.

詳解:因?yàn)閒(x)是奇函數(shù),且周期為2,所以f(-2 015)+f(2 016)=﹣f(2 015)+f(2 016)=﹣f(1)+f(0).

當(dāng)x∈[0,2)時(shí),f(x)=log2(x+1),

所以f(-2 015)+f(2 016)=﹣1+0=﹣1.

故答案為:﹣1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三直線(xiàn)ax+2y+8=0,4x+3y=10,2xy=10相交于一點(diǎn),則a的值是

A. -2 B. -1 C. 0 D. 1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),其中

1當(dāng)時(shí),求曲線(xiàn) 在點(diǎn)處的切線(xiàn)方程;

2求函數(shù)的單調(diào)區(qū)間與極值;

3已知函數(shù)有三個(gè)互不相同的零點(diǎn),且.若對(duì)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)fx)的定義域?yàn)椋?,+),且在(0, +)是遞增的,

(1)求證:f(1)=0,fxy=fx+ fx

(2)設(shè)f(2)=1,解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有甲、乙、丙、丁四位學(xué)生參加數(shù)學(xué)競(jìng)賽,其中只有一名學(xué)生獲獎(jiǎng),有其他學(xué)生問(wèn)這四個(gè)學(xué)生的獲獎(jiǎng)情況,甲說(shuō):“是乙或丙獲獎(jiǎng)”,乙說(shuō):“甲、丙都沒(méi)有獲獎(jiǎng)”,丙說(shuō):“我獲獎(jiǎng)了”,丁說(shuō):“是乙獲獎(jiǎng)了”,四位學(xué)生的話(huà)有且只有兩個(gè)人的話(huà)是對(duì)的,則獲獎(jiǎng)的學(xué)生是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲,乙,丙,丁四人參加完某項(xiàng)比賽,當(dāng)問(wèn)到四人誰(shuí)得第一時(shí),回答如下:甲:“我得第一名”;乙:“丁沒(méi)得第一名”;丙:“乙沒(méi)得第一名”;丁:“我得第一名”.已知他們四人中只有一個(gè)說(shuō)真話(huà),且只有一人得第一.根據(jù)以上信息可以判斷得第一名的人是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】要描述一個(gè)工廠(chǎng)某種產(chǎn)品的生產(chǎn)步驟,應(yīng)用( )

A. 程序框圖 B. 工序流程圖 C. 知識(shí)結(jié)構(gòu)圖 D. 組織結(jié)構(gòu)圖

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面兩個(gè)程序最后輸出的S的值為(  )

程序1:

i=1;

while i<8

i=i+2;

S=2i+3;

end

print(%io(2),S);

程序2:

i=1;

while i<8

S=2i+3;

i=i+2;

end

print(%io(2),S);

A. 都是17 B. 都是21

C. 21,17 D. 17,21

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有下列說(shuō)法:①回歸直線(xiàn)方程適用于一切樣本和總體;②回歸直線(xiàn)方程一般都有時(shí)間性;③樣本取值的范圍會(huì)影響回歸直線(xiàn)方程的適用范圍;④回歸直線(xiàn)方程得到的預(yù)報(bào)值是預(yù)報(bào)變量的精確值.其中正確的是(  )

A. ①② B. ②③ C. ③④ D. ①③

查看答案和解析>>

同步練習(xí)冊(cè)答案