已知平面內點A,B,O不共線,
AP
OA
OB
,則A,P,B三點共線的必要不充分條件是( 。
A、λ=μB、|λ|=|μ|
C、λ=-μD、λ=1-μ
分析:利用平面向量共線定理,將
AP
AB
表示出來,再用
OA
OB
AB
表示出來,進而根據(jù)題干信息推出A,B,P三點共線的充要條件.
解答:解:∵A,B,P三點共線,
∴存在一個數(shù)m,滿足
AP
=m
AB

AP
OA
OB

m
AB
OA
OB
  即m(
OB
-
OA
)=λ
OA
OB

(m-μ)
OB
=(m+λ)
OA

∵A,B,O三點不共線
∴m-μ=0,m+λ=0  即λ=-μ=-m
∴A,B,P三點共線的充要條件為λ=-μ
∴A,B,P三點共線的必要不充分條件為|λ|=|μ|
故選:B
點評:本題考察了向量共線定理以及向量的相關運算,難度適中,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•河西區(qū)一模)已知平面內點A(cos
x
2
,sin
x
2
)
,點B(1,1),
OA
+
OB
=
OC
,f(x)=|
OC
|2

(1)求f(x)的最小正周期;
(2)若x∈[-π,π],求f(x)的最大和最小值,并求當f(x)取最值時x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知對任意平面向量
AB
=(x,y),把
AB
繞其起點沿逆時針方向旋轉θ角得到向量
AP
=(xcosθ-ysinθ,xsinθ+ycosθ),叫做把點B繞點A逆時針方向旋轉θ角得到點P.已知平面內點A(1,2),B(1+
2
,2-2
2
);把點B繞A點沿順時針方向旋轉
π
4
后得到點P,則P點坐標是
(0,-1)
(0,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知對任意平面向量
AB
=(x,y)
,將
AB
繞其起點沿順時針方向旋轉θ角得到向量
AP
=(xcosθ+ysinθ,-xsinθ+ycosθ)
,叫做將點B繞點A沿順時針方向旋轉θ角得到點P.
(1)已知平面內點A(1,2),點B(1+
2
,2-2
2
)
,將點B繞點A沿順時針方向旋轉
π
4
得到點P,求點P的坐標;
(2)設平面內曲線3x2+3y2+2xy=4上的每一點繞坐標原點O沿順時針方向旋轉
π
4
得到的點的軌跡是曲線C,求曲線C的方程;
(3)過(2)中曲線C的焦點的直線l與曲線C交于不同的兩點A、B,當
OA
OB
=0
時,求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知平面內點A(cos
x
2
,sin
x
2
)
,點B(1,1),
OA
+
OB
=
OC
,f(x)=|
OC
|2

(1)求f(x)的最小正周期;
(2)若x∈[-π,π],求f(x)的最大和最小值,并求當f(x)取最值時x的值.

查看答案和解析>>

同步練習冊答案