【題目】已知函數(shù),若方程有四個不等的實數(shù)根,則的取值范圍是(

A.B.

C.D.

【答案】D

【解析】

先對函數(shù)求導(dǎo),用導(dǎo)數(shù)的方法判斷其在上的單調(diào)性,作出函數(shù)的大致圖像,令,根據(jù)圖像,得到方程解的個數(shù)情況,以及其對應(yīng)的的范圍,再由題意得到方程必有兩個不等的實根,根本判別式大于零,得到的范圍,再設(shè)這兩個根為,,且,由題意,得到,進(jìn)而可得出結(jié)果.

由題意,當(dāng)時,,所以,

;由,

所以函數(shù)上單調(diào)遞增,在上單調(diào)遞減,

作出函數(shù)大致圖像如下:

,由圖像可得:

當(dāng)時,方程個解;

當(dāng)時,方程個解;

當(dāng)時,方程個解;

若方程有四個不等的實數(shù)根,

則方程必有兩個不等的實根,

所以,解得:,

不妨設(shè)這兩個根為,,且,

,

,

,

解得:.

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形形狀的紙片是由六個邊長為1的正三角形構(gòu)成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的表面積為__________;若該六面體內(nèi)有一小球,則小球的最大體積為___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三4班有50名學(xué)生進(jìn)行了一場投籃測試,其中男生30人,女生20人.為了了解其投籃成績,甲、乙兩人分別都對全班的學(xué)生進(jìn)行編號(1-50號),并以不同的方法進(jìn)行數(shù)據(jù)抽樣,其中一人用的是系統(tǒng)抽樣,另一人用的是分層抽樣.若此次投籃測試的成績大于或等于80分視為優(yōu)秀,小于80分視為不優(yōu)秀,以下是甲、乙兩人分別抽取的樣本數(shù)據(jù):

甲抽取的樣本數(shù)據(jù)

編號

2

7

12

17

22

27

32

37

42

47

性別











投籃成

90

60

75

80

83

85

75

80

70

60

乙抽取的樣本數(shù)據(jù)

編號

1

8

10

20

23

28

33

35

43

48

性別











投籃成

95

85

85

70

70

80

60

65

70

60

)在乙抽取的樣本中任取3人,記投籃優(yōu)秀的學(xué)生人數(shù)為,求的分布列和數(shù)學(xué)期望.

)請你根據(jù)乙抽取的樣本數(shù)據(jù)完成下列2×2列聯(lián)表,判斷是否有95%以上的把握認(rèn)為投籃成績和性別有關(guān)?


優(yōu)秀

非優(yōu)秀

合計









合計



10

)判斷甲、乙各用何種抽樣方法,并根據(jù)()的結(jié)論判斷哪種抽樣方法更優(yōu)?說明理由.

下面的臨界值表供參考:


0.15

0.10

0.05

0.010

0.005

0.001


2.072

2.706

3.841

6.635

7.879

10.828

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列、滿足,且

1)令證明:是等差數(shù)列,是等比數(shù)列;

2)求數(shù)列的通項公式;

3)求數(shù)列的前n項和公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某組織在某市征集志愿者參加志愿活動,現(xiàn)隨機抽出60名男生和40名女生共100人進(jìn)行調(diào)查,統(tǒng)計出100名市民中愿意參加志愿活動和不愿意參加志愿活動的男女生比例情況,具體數(shù)據(jù)如圖所示.

(1)根據(jù)條件完成下列列聯(lián)表,并判斷是否有的把握認(rèn)為愿意參與志愿活動與性別有關(guān)?

愿意

不愿意

總計

男生

女生

總計

(2)現(xiàn)用分層抽樣的方法從愿意參加志愿活動的市民中選取7名志愿者,再從中抽取2人作為隊長,求抽取的2人至少有一名女生的概率.

參考數(shù)據(jù)及公式:

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐P-ABCD中,四邊形ABCD是直角梯形,底面,,,的中點.

(1)求證:平面平面;

(2)若與平面所成角的正弦值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小學(xué)對五年級的學(xué)生進(jìn)行體質(zhì)測試,已知五年一班共有學(xué)生30人,測試立定跳遠(yuǎn)的成績用莖葉圖表示如圖(單位:):男生成績在175以上(包括175)定義為“合格”,成績在175以下(不包括175)定義為“不合格”.女生成績在165以上(包括165)定義為“合格”,成績在165以下(不包括165)定義為“不合格”.

(1)求五年一班的女生立定跳遠(yuǎn)成績的中位數(shù);

(2)在五年一班的男生中任意選取3人,求至少有2人的成績是合格的概率;

(3)若從五年一班成績“合格”的學(xué)生中選取2人參加復(fù)試,用表示其中男生的人數(shù),寫出的分布列,并求的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個焦點為,點上.

(1)求橢圓的方程;

(2)若直線與橢圓相交于,兩點,問軸上是否存在點,使得是以為直角頂點的等腰直角三角形?若存在,求點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商店計劃每天購進(jìn)某商品若干件,商店每銷售一件該商品可獲利潤60元,若供大于求,剩余商品全部退回,但每件商品虧損10元;若供不應(yīng)求,則從外部調(diào)劑,此時每件調(diào)劑商品可獲利40.

1)若商品一天購進(jìn)該商品10件,求當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天需求量(單位:件,)的函數(shù)解析式;

2)商店記錄了50天該商品的日需求量(單位:件,),整理得下表:

若商店一天購進(jìn)10件該商品,以50天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤在區(qū)間內(nèi)的概率.

查看答案和解析>>

同步練習(xí)冊答案