已知直角的三邊長(zhǎng),滿足
(1)在之間插入2011個(gè)數(shù),使這2013個(gè)數(shù)構(gòu)成以為首項(xiàng)的等差數(shù)列,且它們的和為,求的最小值;
(2)已知均為正整數(shù),且成等差數(shù)列,將滿足條件的三角形的面積從小到大排成一列,且,求滿足不等式的所有的值;
(3)已知成等比數(shù)列,若數(shù)列滿足,證明:數(shù)列中的任意連續(xù)三項(xiàng)為邊長(zhǎng)均可以構(gòu)成直角三角形,且是正整數(shù).

(1)最小值為; (2) 2、3、4.
(3)證明:由成等比數(shù)列,.
由于為直角三角形的三邊長(zhǎng),證明數(shù)列中的任意連續(xù)三項(xiàng)為邊長(zhǎng)均可以構(gòu)成直角三角形. 證得
故對(duì)于任意的都有是正整數(shù).

解析試題分析:(1)是等差數(shù)列,∴,即. 2分
所以,的最小值為; 4分
(2) 設(shè)的公差為,則 5分
設(shè)三角形的三邊長(zhǎng)為,面積,,
. 7分
,
當(dāng)時(shí),,
經(jīng)檢驗(yàn)當(dāng)時(shí),,當(dāng)時(shí), 9分
綜上所述,滿足不等式的所有的值為2、3、4. 10分
(3)證明:因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/1a/e/09w8c.png" style="vertical-align:middle;" />成等比數(shù)列,.
由于為直角三角形的三邊長(zhǎng),知,, 11分
,得,
于是
.… 12分
,則有.
故數(shù)列中的任意連續(xù)三項(xiàng)為邊長(zhǎng)均可以構(gòu)成直角三角形. 14分
因?yàn)?,

, 15分
,同理可得,
故對(duì)于任意的都有是正整數(shù). 16分
考點(diǎn):本題主要考查等差數(shù)列、等比數(shù)列的基礎(chǔ)知識(shí),構(gòu)成直角三角形的條件。
點(diǎn)評(píng):難題,本題綜合性較強(qiáng),涉及等差數(shù)列、等比數(shù)列、不等式及構(gòu)成直角三角形的條件。對(duì)法則是自點(diǎn)變形能力要求高,易出錯(cuò)。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知等差數(shù)列的前項(xiàng)和滿足,。
(Ⅰ)求的通項(xiàng)公式;
(Ⅱ)求數(shù)列的前項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,
(1)求;
(2)求知數(shù)列的通項(xiàng)公式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的各項(xiàng)都是正數(shù),且滿足:
(1)求;
(2)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知△中,角、成等差數(shù)列,且
(1)求角、、
(2)設(shè)數(shù)列滿足,前項(xiàng)為和,若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前項(xiàng)和為
(Ⅰ)計(jì)算
(Ⅱ)根據(jù)(Ⅰ)所得到的計(jì)算結(jié)果,猜想的表達(dá)式,不必證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的各項(xiàng)均為正數(shù),為其前項(xiàng)和,且對(duì)任意的,有.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知數(shù)列是等差數(shù)列,,數(shù)列的前n項(xiàng)和是,且.
(I)求數(shù)列的通項(xiàng)公式;
(II)求證:數(shù)列是等比數(shù)列;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

在等差數(shù)列{an}中,其前n項(xiàng)和是,若,則在中最大的是(  )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案