已知函數(shù)f(x)=x2(x∈[-2,2]),g(x)=a2sin(2x+
π
6
)+3a(x∈[0,
π
2
])
,?x1∈[-2,2],?x0∈[0,
π
2
]
,使得g(x0)=f(x1)成立,則實(shí)數(shù)a的取值范圍是
[0,1]
[0,1]
分析:由已知中函數(shù)f(x)=x2(x∈[-2,2]),g(x)=a2sin(2x+
π
6
)+3a(x∈[0,
π
2
])
,我們易求出兩個(gè)函數(shù)的值域A,B,又由?x1∈[-2,2]?x0∈[0,
π
2
]
,使得g(x0)=f(x1)成立,故B⊆A,由此構(gòu)造關(guān)于a的不等式組,解不等式組,即可求出實(shí)數(shù)a的取值范圍.
解答:解:∵函數(shù)f(x)=x2(x∈[-2,2]),
∴f(x)∈[0,4]
又∵g(x)=a2sin(2x+
π
6
)+3a(x∈[0,
π
2
])
,
則g(x)∈[-
a2
2
+3a
,a2+3a]
令A(yù)=[0,4],B=[-
a2
2
+3a
,a2+3a]
由,?x1∈[-2,2],?x0∈[0,
π
2
]
,使得g(x0)=f(x1)成立,
則B⊆A
-
a2
2
+3a≥0
a2+3a≤4
-
a2
2
+3a≤a2+3a

解得0≤a≤1
即實(shí)數(shù)a的取值范圍是[0,1]
故答案為:[0,1]
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)恒成立問(wèn)題,三角函數(shù)的最值,集合的包含關(guān)系,其中根據(jù)已知條件判斷出函數(shù)f(x)的值域A,與函數(shù)g(x)的值域B,存在B⊆A的關(guān)系,并進(jìn)一步得到一個(gè)關(guān)于a的不等式組,是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案