18.下列命題正確的個(gè)數(shù)是( 。
①命題“?x0∈R,x02+1>3x0”的否定是“?x∈R,x2+1≤3x”;
②已知a=log47,b=log23,c=0.2-0.6,則a<b<c;
③“平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角是鈍角”的充分必要條件是“$\overrightarrow{a}$•$\overrightarrow$<0”;
④已知數(shù)列{an}為等比數(shù)列,則a1<a2<a3是數(shù)列{an}為遞增數(shù)列的必要條件.
A.3個(gè)B.4個(gè)C.1個(gè)D.2個(gè)

分析 ①由含有一個(gè)量詞的命題的否定形式,即可判斷;
②利用指數(shù)式、對(duì)數(shù)式,確定各值的范圍,即可判斷;
③“平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角是鈍角”的充分必要條件是“$\overrightarrow{a}$•$\overrightarrow$<0且$\overrightarrow{a}$與$\overrightarrow$不共線”,可得結(jié)論;
④根據(jù)充分條件和必要條件的定義進(jìn)行判斷即可.

解答 解:①命題“?x0∈R,x02+1>3x0”的否定是“?x∈R,x2+1≤3x”,正確;
②∵a=log47,b=log23=log49,∴a<b<2,∵c=0.2-0.6=50.6>50.5>2,∴a<b<c,正確;
③“平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角是鈍角”的充分必要條件是“$\overrightarrow{a}$•$\overrightarrow$<0且$\overrightarrow{a}$與$\overrightarrow$不共線”,不正確;
④∵{an}是等比數(shù)列,∴若“a1<a2<a3”,則“數(shù)列{an}是遞增數(shù)列”,充分性成立,若“數(shù)列{an}是遞增數(shù)列”,則“a1<a2<a3”成立,即必要性成立,故“a1<a2<a3”是“數(shù)列{an}是遞增數(shù)列”的充要條件,不正確.
故選:D.

點(diǎn)評(píng) 本題考查簡易邏輯的基礎(chǔ)知識(shí),考查命題的否定,大小比較,充分必要條件的判斷,同時(shí)考查函數(shù)值的大小比較,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c.若a+c=$\sqrt{2}$b.
(I)求證:B≤$\frac{π}{2}$;
(Ⅱ)若△ABC的面積為S,且S=tanB,b=2$\sqrt{3}$時(shí),求S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合M={x|3x-x2>0},N={x|x2-4x+3>0},則M∩N=(  )
A.(0,1)B.(1,3)C.(0,3)D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.“若x2+y2>2”,則“|x|>1,或|y|>1”的否命題是( 。
A.若x2+y2≤2,則|x|≤1且|y|≤1B.若x2+y2<2,則|x|≤1且|y|≤1
C.若x2+y2<2,則|x|<1或|y|<1D.若x2+y2<2,則|x|≤1或|y|≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.復(fù)數(shù)$\frac{1}{i-2}$-$\frac{i}{1+2i}$在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.命題p:?x0>1,使得-x02+2x0-1≥0,則?p為(  )
A.?x>1,使得-x2+2x-1≤0B.?x0>1,使得-x02+2x0-1<0
C.?x>1,使得-x2+2x-1<0D.?x≤1,使得-x2+2x-1<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知全集U={1,2,3,4,5},A={1,2},B={2,3,4},那么A∪(∁UB)={1,2,5}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.復(fù)數(shù)$\frac{1+3i}{i-1}$=( 。
A.1-2iB.1+2iC.-1+2iD.-1-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知$\left\{\begin{array}{l}5x+4y≤26\\ 2x+5y-13≤0\\ x∈N\\ y∈N\end{array}\right.$,則目標(biāo)函數(shù)z=20x+10y的最大值為100.

查看答案和解析>>

同步練習(xí)冊(cè)答案