已知函數(shù)y=
(Ⅰ)求函數(shù)y的最小正周期;
(Ⅱ)求函數(shù)y的最大值.

(Ⅰ)y的最小正周期是2.(Ⅱ)函數(shù)y的最大值是2。

解析試題分析:(Ⅰ)∵y=2( )               2分
=2(sinxcos30°+cosxsin30°)      4分
=2sin(x+30°)                     6分
∴y的最小正周期是2.               8分
(Ⅱ)∵﹣1≤sin(x+30°)≤1             10分
∴﹣2≤2sin(x+30°)≤2             12分
∴函數(shù)y的最大值是2                 14分
考點:三角函數(shù)的圖象和性質(zhì),三角函數(shù)輔助角公式。
點評:中檔題,涉及硬件三角函數(shù)的圖象和性質(zhì)問題,一般需利用三角公式,將三角函數(shù)式“化一”,三角函數(shù)的輔助角公式,是重點考查的公式之一。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)若函數(shù)在區(qū)間上存在零點,求實數(shù)的取值范圍;
(2)問:是否存在常數(shù),當時,的值域為區(qū)間,且的長度為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(Ⅰ)求使不等式成立的的取值范圍;
(Ⅱ),,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ)當時,求曲線在原點處的切線方程;
(Ⅱ)當時,討論函數(shù)在區(qū)間上的單調(diào)性;
(Ⅲ)證明不等式對任意成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),.
(I)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當時,函數(shù)恒成立,求實數(shù)的取值范圍;
(Ⅲ)設正實數(shù)滿足,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ)請寫出函數(shù)在每段區(qū)間上的解析式,并在圖中的直角坐標系中作出函數(shù)的圖象;
(II)若不等式對任意的實數(shù)恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)是定義域為的奇函數(shù),且當時,
,(
(1)求實數(shù)的值;并求函數(shù)在定義域上的解析式;
(2)求證:函數(shù)上是增函數(shù)。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知.
(1)若a=0時,求函數(shù)在點(1,)處的切線方程;
(2)若函數(shù)在[1,2]上是減函數(shù),求實數(shù)a的取值范圍;
(3)令是否存在實數(shù)a,當是自然對數(shù)的底)時,函數(shù) 的最小值是3,若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),(其中).
(Ⅰ)求函數(shù)的極值;
(Ⅱ)若函數(shù)在區(qū)間內(nèi)有兩個零點,求正實數(shù)a的取值范圍;(Ⅲ)求證:當時,.(說明:e是自然對數(shù)的底數(shù),e=2.71828…)

查看答案和解析>>

同步練習冊答案