12.已知α為第二象限角.
(1)指出$\frac{a}{2}$所在的象限;
(2)若α還滿足條件|α+2|≤4,求α的取值區(qū)間;
(3)若$\frac{π}{2}$<α<β<π,求α-β的范圍.

分析 (1)根據(jù)第二象限角的集合的范圍即可確定$\frac{a}{2}$所在的象限,
(2)解絕對(duì)值不等式可得a∈[-6,2],結(jié)合α是第二象限角,可得答案.
(3)先確定-β的范圍,再利用不等式的性質(zhì),即可得到結(jié)論.

解答 解:(1)α為第二象限角,
∴2kπ+$\frac{π}{2}$<α<2kπ+π,k∈Z,
∴kπ+$\frac{π}{4}$<$\frac{α}{2}$<kπ+$\frac{π}{2}$,k∈Z,
當(dāng)k為偶數(shù)時(shí),$\frac{a}{2}$在第一象限,
當(dāng)k為奇數(shù)時(shí),$\frac{a}{2}$在第三象限,
(2)α還滿足條件|α+2|≤4,
∴-4≤α+2≤4,
∴-6≤α≤2,
∴a∈($\frac{π}{2}$,2]∪(-$\frac{3π}{2}$,-$\frac{π}{2}$)
(3)∵$\frac{π}{2}$<α<β<π,
∴-π<-β<-$\frac{π}{2}$,
∴-π$+\frac{π}{2}$<α-β<π-$\frac{π}{2}$,
∴-$\frac{π}{2}$<α-β<$\frac{π}{2}$.

點(diǎn)評(píng) 本題考查象限角的概念,解題時(shí)要熟練掌握象限角的判斷方法,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知sin(α+β)=1,試問:tan(2α+β)+tanβ的值是否是定值?若是,求出定值,否則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.函數(shù)f(x)=3sin($\frac{1}{2}$x-$\frac{π}{4}$)的圖象可由函數(shù)y=sinx的圖象經(jīng)過怎樣的變換得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.y=cos($\frac{1}{2}$x+φ)的圖象與y=sin$\frac{1}{2}$x圖象重合,則φ可能為-$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2n+1-2,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù){an}滿足bn=$\frac{{S}_{n}}{{a}_{n}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.扇形的中心角為$\frac{2π}{3}$,弧長(zhǎng)為2π,則其半徑r=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{1}{2}$B.1C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)集合A={x|x≥3},B={x|x≤3},則A∩B=( 。
A.B.RC.{x||x≤3}D.{3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.命題”?x>0,x3-1>0”的否定是?x>0,x3-1≤0.

查看答案和解析>>

同步練習(xí)冊(cè)答案