f(x)=loga(x3-ax)(a>0,a≠1)在區(qū)間(-
1
2
,0)
內(nèi)單調(diào)遞增,則a的最小值是
3
4
3
4
分析:本題為復(fù)合函數(shù),令g(x)=x3-ax,且g(x)>0,得x∈(-
a
,0)∪(
a
,+∞),下面用導(dǎo)數(shù)來判斷其單調(diào)性,再由復(fù)合函數(shù)“同增異減”求得結(jié)果.
解答:解:令g(x)=x3-ax,則g(x)>0.得到 x∈(-
a
,0)∪(
a
,+∞),
由于g′(x)=3x2-a,故x∈(-
a
3
,
a
3
)時(shí),g(x)單調(diào)遞減,?
x∈(-∞,-
a
3
)或x∈(
a
3
,+∞)時(shí),g(x)單調(diào)遞增.?
∴當(dāng)a>1時(shí),減區(qū)間為(-
a
3
,0),?不合題意,
當(dāng)0<a<1時(shí),(-
a
3
,0)為增區(qū)間.?
∴(-
1
2
,0)?(-
a
3
,0),∴-
1
2
≥-
a
3
,∴a≥
3
4

故a的最小值為
3
4

故答案為:
3
4
點(diǎn)評(píng):本題考查復(fù)合函數(shù)的單調(diào)性,結(jié)論是同增異減,解題時(shí)一定要注意定義域,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga(x+1)(a>1),若函數(shù)y=g(x)的圖象與函數(shù)y=f(x)的圖象關(guān)于原點(diǎn)對(duì)稱.
(1)寫出函數(shù)g(x)的解析式;
(2)求不等式2f(x)+g(x)≥0的解集A;
(3)問是否存在m∈R*,使不等式f(x)+2g(x)≥logam的解集恰好是A?若存在,請(qǐng)求出m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

14、函數(shù)f(x)=loga(1-x)+5,其中a>0且a≠1,圖象過定點(diǎn)
(0,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•松江區(qū)一模)設(shè)f(x)是定義在R上的函數(shù),對(duì)x∈R都有f(-x)=f(x),f(x)•f(x+2)=10,且當(dāng)x∈[-2,0]時(shí),f(x)=(
1
2
)x-1
,若在區(qū)間(-2,6]內(nèi)關(guān)于x的方程f(x)-loga(x+2)=0(a>1)恰有3個(gè)不同的實(shí)數(shù)根,則a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga(x+1),g(x)=-loga(1-x).
(1)當(dāng)0<a<1時(shí),解不等式;2f(x)+g(x)≥0;
(2)當(dāng)a>1,x∈[0,1)時(shí),總有2f(x)+g(x)≥m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•南充一模)函數(shù)f(x)=loga|x|+1(a>1)的圖象大致為下圖的( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案