【題目】已知函數(shù)f(x)= 為奇函數(shù).
(1)則a=
(2)函數(shù)g(x)=f(x)﹣ 的值域?yàn)?/span>

【答案】
(1)1
(2)(﹣1,0)∪(0,1)
【解析】解:(1)根據(jù)題意,函數(shù)f(x)= ,則有f(﹣x)= = , 若函數(shù)f(x)為奇函數(shù),則有 =﹣ ,
分析可得,a=1,(2)由(1)可得,a=1,則f(x)= ,
則g(x)=f(x)﹣ = =1+ ,
其中x≠0,
則g(﹣x)= + = + =﹣( )=﹣g(x),則函數(shù)g(x)為奇函數(shù),
當(dāng)x>0時(shí),函數(shù)為增函數(shù),當(dāng)x→+∞時(shí),g(x)→1,
即當(dāng)x>0時(shí),0<g(x)<1,∵函數(shù)是奇函數(shù),
∴當(dāng)x<0時(shí),﹣1<g(x)<0,
綜上函數(shù)的值域?yàn)椋ī?,0)∪(0,1),
所以答案是:1,(﹣1,0)∪(0,1),

【考點(diǎn)精析】通過靈活運(yùn)用函數(shù)奇偶性的性質(zhì),掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:函數(shù)y=log0.5(x2+2x+a)的值域R,命題q:函數(shù)y=x2a5在(0,+∞)上是減函數(shù).若p或q為真命題,p且q為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)遞增的等比數(shù)列{an}的前n項(xiàng)和為Sn , 已知2(an+an+2)=5an+1 , 且
(1)求數(shù)列{an}通項(xiàng)公式及前n項(xiàng)和為Sn;
(2)設(shè) ,求數(shù)列{bn}的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某人第一天8:00從A地開車出發(fā),6小時(shí)后到達(dá)B地,第二天8:00從B地出發(fā),沿原路6小時(shí)后返回A地.則在此過程中,以下說法中 ①一定存在某個(gè)位置E,兩天經(jīng)過此地的時(shí)刻相同
②一定存在某個(gè)時(shí)刻,兩天中在此刻的速度相同
③一定存在某一段路程EF(不含A、B),兩天在此段內(nèi)的平均速度相同.(以上速度不考慮方向)
正確說法的序號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC=2ED,AC∥平面EDB,AC⊥平面BCD,平面ACDE⊥平面ABC.

(Ⅰ)求證:AC∥ED;
(Ⅱ)求證:DC⊥BC;
(Ⅲ)當(dāng)BC=CD=DE=1時(shí),求二面角A﹣BE﹣D的余弦值;
(Ⅳ)在棱AB上是否存在點(diǎn)P滿足EP∥平面BDC;
(Ⅴ)設(shè) =k,是否存在k滿足平面ABE⊥平面CBE?若存在求出k值,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】血藥濃度(Plasma Concentration)是指藥物吸收后在血漿內(nèi)的總濃度.藥物在人體內(nèi)發(fā)揮治療作用時(shí),該藥物的血藥濃度應(yīng)介于最低有效濃度和最低中毒濃度之間.已知成人單次服用1單位某藥物后,體內(nèi)血藥濃度及相關(guān)信息如圖所示:
根據(jù)圖中提供的信息,下列關(guān)于成人使用該藥物的說法中,不正確的個(gè)數(shù)是(
①首次服用該藥物1單位約10分鐘后,藥物發(fā)揮治療作用
②每次服用該藥物1單位,兩次服藥間隔小于2小時(shí),一定會產(chǎn)生藥物中毒
③每間隔5.5小時(shí)服用該藥物1單位,可使藥物持續(xù)發(fā)揮治療作用
④首次服用該藥物1單位3小時(shí)后,再次服用該藥物1單位,不會發(fā)生藥物中毒.
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若無窮數(shù)列{an}滿足:k∈N* , 對于 ,都有an+k﹣an=d(其中d為常數(shù)),則稱{an}具有性質(zhì)“P(k,n0 , d)”. (Ⅰ)若{an}具有性質(zhì)“P(3,2,0)”,且a2=3,a4=5,a6+a7+a8=18,求a3;
(Ⅱ)若無窮數(shù)列{bn}是等差數(shù)列,無窮數(shù)列{cn}是公比為正數(shù)的等比數(shù)列,b1=c3=2,b3=c1=8,an=bn+cn , 判斷{an}是否具有性質(zhì)“P(2,1,0)”,并說明理由;
(Ⅲ)設(shè){an}既具有性質(zhì)“P(i,2,d1)”,又具有性質(zhì)“P(j,2,d2)”,其中i,j∈N* , i<j,i,j互質(zhì),求證:{an}具有性質(zhì)“ ”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓C1的中心在原點(diǎn)O,長軸左、右端點(diǎn)M、N在x軸上,橢圓C2的短軸為MN,且C1、C2的離心率都為e,直線l⊥MN,l與C1交于兩點(diǎn),與C2交于兩點(diǎn),這四點(diǎn)縱坐標(biāo)從大到小依次為A、B、C、D.

(1)設(shè) ,求|BC|與|AD|的比值;
(2)若存在直線l,使得BO∥AN,求橢圓離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在我國古代數(shù)學(xué)名著《九章算術(shù)》中,將四個(gè)面都為直角三角形的四面體稱為鱉臑,如圖,在鱉臑ABCD中,AB⊥平面BCD,且AB=BC=CD,則異面直線AC與BD所成角的余弦值為(
A.
B.﹣
C.
D.﹣

查看答案和解析>>

同步練習(xí)冊答案