若圓x2+y2+2x-6y+m=0與直線3x+4y+1=0相切,則實(shí)數(shù)m= .
【答案】
分析:把圓的方程化為標(biāo)準(zhǔn)方程,找出圓心坐標(biāo),用m表示出圓的半徑r,由直線與圓相切,得到圓心到直線的距離等于圓的半徑,故利用點(diǎn)到直線的距離公式求出圓心到已知直線的距離d,令d=r列出關(guān)于m的方程,求出方程的解即可得到m的值.
解答:解:把圓的方程化為標(biāo)準(zhǔn)方程得:(x+1)
2+(y-3)
2=10-m,
∴圓心坐標(biāo)為(-1,3),半徑r=
,
由直線與圓相切,得到圓心到直線的距離d=r,
即
=
,
解得:m=6.
故答案為:6
點(diǎn)評:此題考查了直線與圓的位置關(guān)系,涉及的知識(shí)有圓的標(biāo)準(zhǔn)方程,點(diǎn)到直線的距離公式,在研究直線與圓位置關(guān)系時(shí),常常借助d與r的大小關(guān)系來判斷位置關(guān)系:當(dāng)0≤d<r時(shí),直線與圓相交;當(dāng)d=r時(shí),直線與圓相切;當(dāng)d>r時(shí),直線與圓相離(其中d表示圓心到直線的距離,r表示圓的半徑).