設(shè)函數(shù)f(x)=x3-12x+5,x∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)若關(guān)于x的方程f(x)=a有三個(gè)不同實(shí)根,求實(shí)數(shù)a的取值范圍;
(1)f(x)的單調(diào)遞增區(qū)間為(-∞,-2)和(2,+∞);單調(diào)減區(qū)間為(-2,2)當(dāng)x=-2時(shí),f(x)有極大值21;當(dāng)x=2時(shí),f(x)有極小值-11.
(2)
解析試題分析:解:(1)f′(x)=3x2-12,令f′(x)=0,解得x1=-2,x2=2. 2分
因?yàn)楫?dāng)x>2或x<-2時(shí),f′(x)>0;當(dāng)-2<x<2時(shí),f′(x)<0.
所以f(x)的單調(diào)遞增區(qū)間為(-∞,-2)和(2,+∞);單調(diào)減區(qū)間為(-2,2). 3分
當(dāng)x=-2時(shí),f(x)有極大值21;當(dāng)x=2時(shí),f(x)有極小值-11. 2分
(2)由(1)的分析知y=f(x)的圖象的大致形狀及走向,當(dāng)-11<a<21時(shí),直線y=a與y=f(x)的
圖象有三個(gè)不同交點(diǎn),即方程f(x)=a有三個(gè)不同的解. 2分
考點(diǎn):導(dǎo)數(shù)的運(yùn)用
點(diǎn)評:主要是考查了導(dǎo)數(shù)在研究函數(shù)中單調(diào)性和極值的運(yùn)用,屬于基礎(chǔ)題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求在區(qū)間上的最大值;
(2)若函數(shù)在區(qū)間上存在遞減區(qū)間,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
(1)求的單調(diào)區(qū)間;
(2)若關(guān)于的方程在區(qū)間上有唯一實(shí)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)若在上的最大值為,求實(shí)數(shù)的值;
(Ⅱ)若對任意,都有恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)在(Ⅰ)的條件下,設(shè),對任意給定的正實(shí)數(shù),曲線 上是否存在兩點(diǎn),使得是以(為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)若存在函數(shù)使得恒成立,則稱是的一個(gè)“下界函數(shù)”.
(I) 如果函數(shù)為實(shí)數(shù)為的一個(gè)“下界函數(shù)”,求的取值范圍;
(Ⅱ)設(shè)函數(shù) 試問函數(shù)是否存在零點(diǎn),若存在,求出零點(diǎn)個(gè)數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間和極值。
(2)若關(guān)于的方程有三個(gè)不同實(shí)根,求實(shí)數(shù)的取值范圍;
(3)已知當(dāng)(1,+∞)時(shí),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)(,b∈Z),曲線在點(diǎn)(2,)處的切線方程為=3.
(1)求的解析式;
(2)證明:曲線=上任一點(diǎn)的切線與直線和直線所圍三角形的面積為定值,并求出此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的導(dǎo)函數(shù)是,在處取得極值,且
,
(Ⅰ)求的極大值和極小值;
(Ⅱ)記在閉區(qū)間上的最大值為,若對任意的總有
成立,求的取值范圍;
(Ⅲ)設(shè)是曲線上的任意一點(diǎn).當(dāng)時(shí),求直線OM斜率的最
小值,據(jù)此判斷與的大小關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
文科(本小題滿分14分)設(shè)函數(shù)。(Ⅰ)若函數(shù)在處與直線相切,①求實(shí)數(shù),b的值;②求函數(shù)上的最大值;(Ⅱ)當(dāng)時(shí),若不等式對所有的都成立,求實(shí)數(shù)m的取值范圍。)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com