如右圖,拋物線C:(p>0)的焦點(diǎn)為F,A為C上的點(diǎn),以F為圓心,為半徑的圓與線段AF的交點(diǎn)為B,∠AFx=60°,A在y軸上的射影為N,則∠=      

試題分析:因?yàn)辄c(diǎn)A到準(zhǔn)線的距離為,點(diǎn)A到焦點(diǎn)的距離為,所以
。因?yàn)椤螦Fx=60°,所以∠BAN=60°,所以在三角形ABN中,
∠ANB=∠ABN=60°,則∠BNO=30°.
點(diǎn)評(píng):本題要用到拋物線的特點(diǎn):拋物線上的點(diǎn)到焦點(diǎn)的距離等于它到準(zhǔn)線的距離。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

點(diǎn)到圖形上每一個(gè)點(diǎn)的距離的最小值稱為點(diǎn)到圖形的距離,那么平面內(nèi)到定圓的距離與到定點(diǎn)的距離相等的點(diǎn)的軌跡不可能是(   )
A.圓B.橢圓C.雙曲線的一支D.直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,橢圓的右焦點(diǎn)與拋物線的焦點(diǎn)重合,過(guò)作與軸垂直的直線與橢圓交于S、T兩點(diǎn),與拋物線交于C、D兩點(diǎn),且

(Ⅰ)求橢圓的方程;
(Ⅱ)若過(guò)點(diǎn)的直線與橢圓相交于兩點(diǎn),設(shè)為橢圓上一點(diǎn),且滿足為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如果方程表示焦點(diǎn)在y軸上的橢圓,則實(shí)數(shù)k的取值范圍是(   )
A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓和圓,過(guò)橢圓上一點(diǎn)P引圓O的兩條切線,切點(diǎn)分別為A,B.

(1)(。┤魣AO過(guò)橢圓的兩個(gè)焦點(diǎn),求橢圓的離心率e的值;
(ⅱ)若橢圓上存在點(diǎn)P,使得,求橢圓離心率e的取值范圍;
(2)設(shè)直線AB與x軸、y軸分別交于點(diǎn)M,N,問(wèn)當(dāng)點(diǎn)P在橢圓上運(yùn)動(dòng)時(shí),是否為定值?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

橢圓的右焦點(diǎn)為為常數(shù),離心率為,過(guò)焦點(diǎn)、傾斜角為的直線交橢圓與M,N兩點(diǎn),
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng)=時(shí),=,求實(shí)數(shù)的值;
(3)試問(wèn)的值是否與直線的傾斜角的大小無(wú)關(guān),并證明你的結(jié)論

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

過(guò)點(diǎn)的直線與拋物線交于兩點(diǎn),記線段的中點(diǎn)為,過(guò)點(diǎn)和這個(gè)拋物線的焦點(diǎn)的直線為,的斜率為,則直線的斜率與直線的斜率之比可表示為的函數(shù)        __   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知分別是雙曲線的兩個(gè)焦點(diǎn),是以(為坐標(biāo)原點(diǎn))為圓心,為半徑的圓與該雙曲線左支的兩個(gè)交點(diǎn),且是等邊三角形,則雙曲線的離心率為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知分別為橢圓的上、下焦點(diǎn),其中也是拋物線的焦點(diǎn),點(diǎn)在第二象限的交點(diǎn),且

(Ⅰ)求橢圓的方程;
(Ⅱ)已知點(diǎn)(1,3)和圓,過(guò)點(diǎn)的動(dòng)直線與圓相交于不同的兩點(diǎn),在線段取一點(diǎn),滿足:)。
求證:點(diǎn)總在某定直線上。

查看答案和解析>>

同步練習(xí)冊(cè)答案