【題目】設(shè)公差大于0的等差數(shù)列成等比數(shù)列,記數(shù)列的前n項(xiàng)和為.
(Ⅰ)求;
(Ⅱ)若對(duì)于任意的n∈恒成立,求實(shí)數(shù)t的取值范圍。
【答案】(1) ;(2) .
【解析】試題分析:(Ⅰ)有條件可求得=2n+1,故,利用裂項(xiàng)相消法求和;(Ⅱ)由恒成立及(Ⅰ)通過(guò)分離參數(shù)可得恒成立,由基本不等式求得最值即可得。
試題解析:
(Ⅰ)設(shè)等差數(shù)列{an}的公差為d(d>0),
由=15有3+ =15,化簡(jiǎn)得a1+d=5,①
又 , , 成等比數(shù)列,
∴= ,即(+3)2= (+12),化簡(jiǎn)3=2,②
聯(lián)立①②解得=3, =2,
∴=3+2(n-1)=2n+1.
∴,
∴.
(Ⅱ)由 +11恒成立可得對(duì)于任意的n∈恒成立,
∴對(duì)于任意的n∈,
又≥6 ,當(dāng)且僅當(dāng)n=3時(shí)等號(hào)成立,
∴≥162,
∴.
∴ 實(shí)數(shù)t的取值范圍為。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知線段AB,CD分別在兩條異面直線上,M,N分別是線段AB,CD的中點(diǎn),則MN(AC+BD)(填“>”“<”或“=”).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)中,是奇函數(shù)且在定義域內(nèi)單調(diào)遞減的函數(shù)是( )
A.
B.
C.y=﹣tanx
D.y=﹣x3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】20名學(xué)生某次數(shù)學(xué)考試成績(jī)(單位:分)的頻率分布直方圖如圖13所示.
(1)求頻率分布直方圖中a的值;
(2)分別求出成績(jī)落在[50,60)與[60,70)中的學(xué)生人數(shù);
(3)從成績(jī)?cè)?/span>[50,70)的學(xué)生中任選2人,求此2人的成績(jī)都在[60,70)中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若對(duì)任意實(shí)數(shù)x,cos2x+2ksinx﹣2k﹣2<0恒成立,則實(shí)數(shù)k的取值范圍是( )
A.
B.
C.
D.k>﹣1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ)(其中A>0, )的圖象如圖所示,為了得到g(x)=2sin2x的圖象,則只需將f(x)的圖象( )
A.向右平移 個(gè)長(zhǎng)度單位
B.向右平移 個(gè)長(zhǎng)度單位
C.向左平移 個(gè)長(zhǎng)度單位
D.向左平移 個(gè)長(zhǎng)度單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中且,若, 在處切線的斜率為.
(1)求函數(shù)的解析式及其單調(diào)區(qū)間;
(2)若實(shí)數(shù)滿足,且對(duì)于任意恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)與.
(1)若曲線與曲線恰好相切于點(diǎn),求實(shí)數(shù)的值;
(2)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍;
(3)求證:. .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com