【題目】若對任意實(shí)數(shù)x,cos2x+2ksinx﹣2k﹣2<0恒成立,則實(shí)數(shù)k的取值范圍是( )
A.
B.
C.
D.k>﹣1
【答案】B
【解析】解:∵cos2x+2ksinx﹣2k﹣2=1﹣sin2x+2ksinx﹣2k﹣2=﹣sin2x+2ksinx﹣2k﹣1=2k(sinx﹣1)﹣(sin2x+1)<0恒成立即2k(sinx﹣1)<(sin2x+1)恒成立
當(dāng)sinx﹣1=0時,顯然成立
當(dāng)sinx﹣1≠0時,則sinx﹣1<0
故2k> 恒成立
令t=sinx,y= = (﹣1≤t<1)
則y′=
令y′=0,則t2﹣2t﹣1=0,
解得t=1﹣ ,或t=1+ (舍去)
由t∈[﹣1,1﹣ )時,y′>0,t∈(1﹣ ,1)時,y′<0,
∴y= (﹣1≤t<1)在[﹣1,1﹣ )上遞增;在(1﹣ ,1)上遞減
即ymax=y|t=1﹣ =2﹣2
則2k>2﹣2
則k>1﹣
故選B
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)在其定義域的一個子集[a,b]上存在實(shí)數(shù) (a<m<b),使f(x)在m處的導(dǎo)數(shù)f′(m)滿足f(b)﹣f(a)=f′(m)(b﹣a),則稱m是函數(shù)f(x)在[a,b]上的一個“中值點(diǎn)”,函數(shù)f(x)= x3﹣x2在[0,b]上恰有兩個“中值點(diǎn)”,則實(shí)數(shù)b的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】漳州市博物館為了保護(hù)一件珍貴文物,需要在館內(nèi)一種透明又密封的長方體玻璃保護(hù)罩內(nèi)充入保護(hù)液體.該博物館需要支付的總費(fèi)用由兩部分組成:①罩內(nèi)該種液體的體積比保護(hù)罩的容積少0.5立方米,且每立方米液體費(fèi)用500元;②需支付一定的保險(xiǎn)費(fèi)用,且支付的保險(xiǎn)費(fèi)用與保護(hù)罩容積成反比,當(dāng)容積為2立方米時,支付的保險(xiǎn)費(fèi)用為4000元.
(Ⅰ)求該博物館支付總費(fèi)用與保護(hù)罩容積之間的函數(shù)關(guān)系式;
(Ⅱ)求該博物館支付總費(fèi)用的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)公差大于0的等差數(shù)列成等比數(shù)列,記數(shù)列的前n項(xiàng)和為.
(Ⅰ)求;
(Ⅱ)若對于任意的n∈恒成立,求實(shí)數(shù)t的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)y=f(x)是定義在(0,+∞)上的減函數(shù),并且滿足f(xy)=f(x)+f(y), .
(1)求f(1)的值;
(2)如果f(x)+f(2﹣x)<2,求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的內(nèi)角A、B、C所對的邊分別為a,b,c且a=5,sinA= .
(I)若S△ABC= ,求周長l的最小值;
(Ⅱ)若cosB= ,求邊c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)0<a≤ ,若滿足不等式|x﹣a|<b的一切實(shí)數(shù)x,亦滿足不等式|x﹣a2|< ,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】f(x)是定義在D上的函數(shù),若存在區(qū)間[m,n]D,使函數(shù)f(x)在[m,n]上的值域恰為[km,kn],則稱函數(shù)f(x) 是k型函數(shù).給出下列說法:
①f(x)=3﹣ 不可能是k型函數(shù);
②若函數(shù)y=﹣ x2+x是3型函數(shù),則m=﹣4,n=0;
③設(shè)函數(shù)f(x)=x3+2x2+x(x≤0)是k型函數(shù),則k的最小值為 ;
④若函數(shù)y= (a≠0)是1型函數(shù),則n﹣m的最大值為 .
下列選項(xiàng)正確的是( )
A.①③
B.②③
C.②④
D.①④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com