【題目】中石化集團(tuán)通過與安哥拉國(guó)家石油公司合作,獲得了安哥拉深海油田區(qū)塊的開采權(quán),集團(tuán)在某些區(qū)塊隨機(jī)初步勘探了部分舊井,取得了地質(zhì)資料.進(jìn)入全面勘探時(shí)期后集團(tuán)按網(wǎng)絡(luò)點(diǎn)來布置井位來進(jìn)行全面勘探.由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費(fèi)用.勘探初期數(shù)據(jù)資料見下表:
井位 | 1 | 2 | 3 | 4 | 5 | 6 |
坐標(biāo) | ||||||
鉆探深度 | 2 | 4 | 5 | 6 | 8 | 10 |
出油量 | 40 | 70 | 110 | 90 | 160 | 205 |
(1)若16號(hào)舊井位置滿足線性分布,借助前5組數(shù)據(jù)所求得的回歸直線方程為,且,求,并估計(jì)的預(yù)報(bào)值;
(2)現(xiàn)準(zhǔn)備勘探新井7(1,25),若通過,1,3,5,7號(hào)井計(jì)算出的,的值與(1)中,的值的差不超過10%,則使用位置最接近的舊井,否則在新位置打井,請(qǐng)判斷可否使用舊井?(注:其中的計(jì)算結(jié)果用四舍五入法保留一位小數(shù))
參考數(shù)據(jù):
參考公式:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題;命題函數(shù)在區(qū)間上有零點(diǎn).
(1)當(dāng)時(shí),若為真命題,求實(shí)數(shù)的取值范圍;
(2)若命題是命題的充分不必要條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為更好進(jìn)行校紀(jì)、校風(fēng)管理,爭(zhēng)創(chuàng)文明學(xué)校,由志愿者組成“小紅帽”監(jiān)督崗,對(duì)全校的不文明行為進(jìn)行監(jiān)督管理,對(duì)有不文明行為者進(jìn)行批評(píng)教育,并作詳細(xì)的登記,以便跟蹤調(diào)查下表是個(gè)周內(nèi)不文明行為人次統(tǒng)計(jì)數(shù)據(jù):
周次 | |||||
不文明行為人次 |
(1)請(qǐng)利用所給數(shù)據(jù)求不文明人次與周次之間的回歸直線方程,并預(yù)測(cè)該學(xué)校第周的不文明人次;
(2)從第周到第周記錄得知,高一年級(jí)有位同學(xué),高二年級(jí)有位同學(xué)已經(jīng)有次不文明行為.學(xué)校德育處決定先從這人中任選人進(jìn)行重點(diǎn)教育,求抽到的兩人恰好來自同一年級(jí)的概率
參考公式:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)討論的單調(diào)性;
(Ⅱ)當(dāng)時(shí),令,其導(dǎo)函數(shù)為,設(shè)是函數(shù)的兩個(gè)零點(diǎn),判斷是否為的零點(diǎn)?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是等邊三角形, 是邊上的動(dòng)點(diǎn)(含端點(diǎn)),記,.
(1)求的最大值;
(2)若,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,(且),函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)的圖像在點(diǎn)處的切線的斜率為1,問:在什么范圍取值時(shí),對(duì)于任意的,函數(shù)在區(qū)間上總存在極值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是矩形,側(cè)棱底面,,點(diǎn)是的中點(diǎn).
求證:平面;
若直線與平面所成角為,求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐的五個(gè)頂點(diǎn)都在球O的球面上,,,,是等邊三角形,若四棱錐體積的最大值,則球O的表面積為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),若函數(shù)在上的最大值和最小值的和為1,求實(shí)數(shù)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com