【題目】如圖,是等邊三角形, 邊上的動點(含端點),記,.

(1)求的最大值;

(2)若,求的面積.

【答案】(1)當α,即DBC中點時,原式取最大值;(2).

【解析】

(1)由題意可得β=α+,根據(jù)三角函數(shù)和差公式及輔助角公式化簡即可求出其最大值

(2)根據(jù)三角函數(shù)差角公式求得sinα,再由正弦定理,求得AB的長度;進而求得三角形面積

(1)ABC是等邊三角形,得β=α+,

0≤α≤,故2cos-cos=2cos-cossin

故當α=,即DBC中點時,原式取最大值

(2)cos β= ,得sin β=

sin α=sin=sin βcos-cos βsin,

由正弦定理,

AB= BD=×1= ,故SABDAB·BD·sin B=

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】我國南宋時期著名的數(shù)學家秦九韶在其著作《數(shù)書九章》中,提出了已知三角形三邊長求三角形的面積的公式,與著名的海倫公式完全等價,由此可以看出我國古代已具有很高的數(shù)學水平,其求法是:以小斜冪并大斜冪減中斜冪,余半之,自乘于上.以小斜冪乘大斜冪減上,余四約之,為實.一為從隔,開平方得積.若把以上這段文字寫成公式,即,其中a、bc分別為內(nèi)角A、BC的對邊.,,則面積S的最大值為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有一名高二學生盼望2020年進入某名牌大學學習,假設(shè)該名牌大學有以下條件之一均可錄。孩2020年2月通過考試進入國家數(shù)學奧賽集訓隊(集訓隊從2019年10月省數(shù)學競賽一等獎中選拔):②2020年3月自主招生考試通過并且達到2020年6月高考重點分數(shù)線,③2020年6月高考達到該校錄取分數(shù)線(該校錄取分數(shù)線高于重點線),該學生具備參加省數(shù)學競賽、自主招生和高考的資格且估計自己通過各種考試的概率如下表

省數(shù)學競賽一等獎

自主招生通過

高考達重點線

高考達該校分數(shù)線

0.5

0.6

0.9

0.7

若該學生數(shù)學競賽獲省一等獎,則該學生估計進入國家集訓隊的概率是0.2.若進入國家集訓隊,則提前錄取,若未被錄取,則再按②、③順序依次錄取:前面已經(jīng)被錄取后,不得參加后面的考試或錄取.(注:自主招生考試通過且高考達重點線才能錄。

(Ⅰ)求該學生參加自主招生考試的概率;

(Ⅱ)求該學生參加考試的次數(shù)的分布列及數(shù)學期望;

(Ⅲ)求該學生被該校錄取的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)gx=ax2﹣2ax+1+ba0)在區(qū)間[0,3]上有最大值4和最小值1.設(shè)fx=

1)求a、b的值;

2)若不等式f2x﹣k2x≥0x∈[﹣1,1]上有解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)常數(shù).在平面直角坐標系中,已知點,直線,曲線軸交于點、與交于點、分別是曲線與線段上的動點.

(1)用表示點到點距離;

(2)設(shè),,線段的中點在直線,求的面積;

(3)設(shè),是否存在以為鄰邊的矩形,使得點上?若存在,求點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了實現(xiàn)綠色發(fā)展,避免浪費能源,某市政府計劃對居民用電實行階梯收費的方法.為此,相關(guān)部門隨機調(diào)查了20戶居民六月分的月用電量(單位:kwh)和家庭月收入(單位:方元)月用電量數(shù)據(jù)如下18,6372,8293,98106,10,18,130,134139,147163,180194,212237,260,324家庭月收入數(shù)據(jù)如下0.21,0.240.35,0400.52,0.600.58,0.65065,0.630.68,0.80,0.83,0.930.97,0.96,1.11.2,1.51.8

1)根據(jù)國家發(fā)改委的指示精神,該市實行3階階梯電價,使7%的用戶在第一檔,電價為0.56/kwh,20%的用戶在第二檔,電價為0.61/kwh5%的用戶在第三檔,電價為0.86/kwh,試求出居民用電費用Q與用電量x間的函數(shù)關(guān)系式;

2)以家庭月收入t為橫坐標,電量x為縱坐標作出散點圖(如圖)求出x關(guān)于t的回歸直線方程(系數(shù)四舍五入保留整數(shù));

3)小明家庭月收入7000元,按上述關(guān)系,估計小明家月支出電費多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地1~10歲男童年齡(單位:歲)與身高的中位數(shù) (單位,如表所示:

/歲

1

2

3

4

5

6

7

8

9

10

76.5

88.5

96.8

104.1

111.3

117.7

124

130

135.4

140.2

對上表的數(shù)據(jù)作初步處理,得到下面的散點圖及一些統(tǒng)計量的值.

112.45

82.50

3947.71

566.85

(1)求關(guān)于的線性回歸方程(回歸方程系數(shù)精確到0.01);

(2)某同學認為方程更適合作為關(guān)于的回歸方程模型,他求得的回歸方程是.經(jīng)調(diào)查,該地11歲男童身高的中位數(shù)為,與(1)中的線性回歸方程比較,哪個回歸方程的擬合效果更好?

(3)從6歲~10歲男童中每個年齡階段各挑選一位男童參加表演(假設(shè)該年齡段身高的中位數(shù)就是該男童的身高).再從這5位男童中任挑選兩人表演“二重唱”,則“二重唱”男童身高滿足的概率是多少?

參考公式:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知yf(x)的導函數(shù)f′(x)的圖像如圖所示,則下列結(jié)論正確的是(  )

A.f(x)在(-3,-1)上先增后減B.x=-2是f(x)極小值點

C.f(x)在(-1,1)上是增函數(shù)D.x=1是函數(shù)f(x)的極大值點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】國際象棋比賽中.勝局一得1分,平一局得0.5分,負一局得0分。今有8名選手進行單循環(huán)比賽(每兩人均賽一局),賽完后、發(fā)現(xiàn)各選手的得分均不相同,當按得分由大到小排列好名次后,第四名選手得4.5分,第二名的得分等于最后四名選手得分總和.問前三名選手各得多少分?說明理由.

查看答案和解析>>

同步練習冊答案