y=x0.3的導(dǎo)數(shù)為
 
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:直接利用基本初等函數(shù)的導(dǎo)數(shù)公式得答案.
解答: 解:∵y=x0.3,∴y′=0.3•x0.3-1=0.3•x-0.7
故答案為:y′=0.3x-0.7
點(diǎn)評:本題考查了基本初等函數(shù)的導(dǎo)數(shù)公式,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
|x|(x+4)
x+2
(x≠-2),下列關(guān)于函數(shù)g(x)=[f(x)]2-f(x)+a(其中a為常數(shù))的敘述中:①?a>0,函數(shù)g(x)一定有零點(diǎn);②當(dāng)a=0時(shí),函數(shù)g(x)有5個(gè)不同零點(diǎn);③?a∈R,使得函數(shù)g(x)有4個(gè)不同零點(diǎn);④函數(shù)g(x)有6個(gè)不同零點(diǎn)的充要條件是0<a<
1
4
.其中真命題的序號(hào)是( 。
A、①②③B、②③④
C、②③D、①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}為等差數(shù)列,首項(xiàng)a1=1,公差d≠0.若ab1,ab2,ab3,…,abn,…成等比數(shù)列,且b1=1,b2=2,b3=5.
(1)求數(shù)列{bn}的通項(xiàng)公式bn
(2)設(shè)cn=log3(2bn-1),求和Tn=c1c2-c2c3+c3c4-c4c5+…+c2n-1c2n-c2nc2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2
1
x2-2x-3
x
dx
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xoy中,直線l的參數(shù)方程為
x=-
3
5
t+2
y=
4
5
t
 (t 為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=asinθ.
(Ⅰ)若a=2,求圓C的直角坐標(biāo)方程與直線l的普通方程;
(Ⅱ)設(shè)直線l截圓C的弦長等于圓C的半徑長的
3
倍,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)在x=x0處可導(dǎo),則
lim
△x→0
f(x0-2△x)-f(x0)
△x
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2-x)8展開式中各項(xiàng)系數(shù)的和為( 。
A、-1B、1
C、256D、-256

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,公比為q.
(1)如果S6=
189
4
,q=
1
2
,求a1;
(2)如果S3=14,a1=2,求q;
(3)如果a1+a3+a5=21,a2+a4+a8=42,求Sn;
(4)如果S5=15,S10=60,求S15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線m和平面α,β,則下列四個(gè)命題中正確的是( 。
A、若α⊥β,m?β,則m⊥α
B、若α∥β,m∥α,則m∥β
C、若m∥α,m∥β,則α∥β
D、若α∥β,m⊥α,則m⊥β

查看答案和解析>>

同步練習(xí)冊答案