精英家教網 > 高中數學 > 題目詳情
經過兩圓x2+y2-4x-6=0和x2+y2-4y-6=0交點的直線方程為
x-y=0
x-y=0
分析:將兩圓方程相減可得公共弦方程,即為所求.
解答:解:∵圓x2+y2-4x-6=0和x2+y2-4y-6=0
∴兩圓方程相減可得(x2+y2-4x-6)-(x2+y2-4y-6)=0
化簡得x-y=0
故答案為:x-y=0
點評:本題考查圓與圓的位置關系,考查學生的計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

圓心在直線x-y-4=0上,且經過兩圓x2+y2-4x-3=0,x2+y2-4y-3=0的交點的圓的方程為(  )
A、x2+y2-6x+2y-3=0B、x2+y2+6x+2y-3=0C、x2+y2-6x-2y-3=0D、x2+y2+6x-2y-3=0

查看答案和解析>>

科目:高中數學 來源: 題型:

經過兩圓x2+y2+6x-4=0和x2+y2+6y-28=0的交點的直線方程是
x-y+4=0
x-y+4=0

查看答案和解析>>

科目:高中數學 來源: 題型:

經過兩圓x2+y2=9和(x+4)2+(y+3)2=8交點的直線方程為
4x+3y+13=0
4x+3y+13=0

查看答案和解析>>

科目:高中數學 來源: 題型:

求經過兩圓x2+y2-2x-3=0與x2+y2-4x+2y+3=0的交點,且圓心在直線2x-y=0上的圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知圓C的圓心在直線x-y-4=0上,并且經過兩圓x2+y2-4x-3=0和x2+y2-4y-3=0的交點,則圓C的方程為
 

查看答案和解析>>

同步練習冊答案