17.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),F(xiàn)1、F2是其左右焦點(diǎn),其橢圓的長(zhǎng)軸長(zhǎng)等于短軸長(zhǎng)的2倍,且經(jīng)過(guò)點(diǎn)(2,1).
(1)求橢圓的方程;
(2)P是橢圓上一點(diǎn),且∠F1PF2=90°,求P點(diǎn)的坐標(biāo).

分析 (1)由題意可設(shè)橢圓方程為x2+4y2-4b2=0,代入點(diǎn)的坐標(biāo)求得b,則橢圓方程可求;
(2)設(shè)出P的橫坐標(biāo),利用橢圓焦半徑公式可得|PF1|=$2\sqrt{2}+\frac{\sqrt{3}}{2}{x}_{0}$,|PF2|=$2\sqrt{2}-\frac{\sqrt{3}}{2}{x}_{0}$,由勾股定理求出P的橫坐標(biāo),代入橢圓方程可得P的坐標(biāo).

解答 解:(1)由題意可知a=2b,則橢圓方程為x2+4y2-4b2=0,
把(2,1)代入可得:22+4×12-4b2=0,即b2=2.
∴橢圓方程為$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{2}=1$;
(2)由橢圓方程為$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{2}=1$,得a2=8,b2=2,
∴c2=a2-b2=6,則a=$2\sqrt{2}$,c=$\sqrt{6}$,$e=\frac{\sqrt{3}}{2}$,
設(shè)P的橫坐標(biāo)為x0,則|PF1|=$2\sqrt{2}+\frac{\sqrt{3}}{2}{x}_{0}$,|PF2|=$2\sqrt{2}-\frac{\sqrt{3}}{2}{x}_{0}$,
∵∠F1PF2=90°,
∴$|P{F}_{1}{|}^{2}+|P{F}_{2}{|}^{2}=4{c}^{2}$,即$(2\sqrt{2}+\frac{\sqrt{3}}{2}{x}_{0})^{2}+(2\sqrt{2}-\frac{\sqrt{3}}{2}{x}_{0})^{2}=4×6$,
解得${{x}_{0}}^{2}=\frac{16}{3}$,${x}_{0}=±\frac{4\sqrt{3}}{3}$.
代入$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{2}=1$,可得y=$±\frac{\sqrt{6}}{3}$.
∴P點(diǎn)的坐標(biāo)為P($\frac{4\sqrt{3}}{3},\frac{\sqrt{6}}{3}$)、P($\frac{4\sqrt{3}}{3},-\frac{\sqrt{6}}{3}$)、P($-\frac{4\sqrt{3}}{3},\frac{\sqrt{6}}{3}$)、P($-\frac{4\sqrt{3}}{3},-\frac{\sqrt{6}}{3}$).

點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì),考查了焦半徑公式的應(yīng)用,考查計(jì)算能力,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)$a={2^{1.2}},b=ln2,c={log_2}\frac{1}{3}$,則a,b,c的大小順序?yàn)椋ā 。?table class="qanwser">A.a>b>cB.a>c>bC.b>a>cD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.f(x)為定義域R,圖象關(guān)于原點(diǎn)對(duì)稱,當(dāng)x≥0時(shí),f(x)=2x+2x+b(b為常數(shù)),則x<0時(shí),f(x)解析式為( 。
A.f(x)=2x-2x-1B.f(x)=-2-x+2x+1C.f(x)=2-x-2x-1D.f(x)=-2-x-2x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.α,β是關(guān)于x的方程x2-2(cosθ+1)x+cos2θ=0的兩個(gè)實(shí)根,且|α-β|≤2$\sqrt{2}$,求θ的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知x>0,y>0,若x+$\frac{1}{x}$+y+$\frac{9}{y}$=10,則x+y的最小值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(2-x),x<2}\\{{x}^{\frac{2}{3},}x≥2}\end{array}\right.$則不等式f(3x+1)<4的解集為(-5,$\frac{7}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=1nx,g(x)=-$\frac{1}{x}$.判斷曲線y=f(x)與曲線y=g(x)(x<0)的公共切線(與兩曲線均相切)的條數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.某城市現(xiàn)有人口100萬(wàn),根據(jù)最近20年的統(tǒng)計(jì)資料,這個(gè)城市的人口的年自然增長(zhǎng)率為1.2%,按這個(gè)增長(zhǎng)計(jì)算10年后這個(gè)城市的人口預(yù)計(jì)有( 。┤f(wàn).
A.y=100×0.01210B.y=100×(1+1.2%)10C.y=100×(1-1.2%)10D.y=100×1.210

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.當(dāng)x∈[0,5]時(shí),函數(shù)f(x)=3x2-4x+1的值域?yàn)閇$-\frac{1}{3}$,56].

查看答案和解析>>

同步練習(xí)冊(cè)答案