考點(diǎn):數(shù)列的求和,數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:(1)由S
n=
(a
n+3)(a
n-1),利用當(dāng)n≥2時(shí),a
n=S
n-S
n-1,可得a
n-a
n-1=2,當(dāng)n=1時(shí),a
1=S
1=
(a1+3)(a1-1),解得a
1,再利用等差數(shù)列的通項(xiàng)公式即可得出.
(2)由(1)可得b
n=
+=2+2
(-),利用“裂項(xiàng)求和”即可得出.
解答:
解:(1)∵S
n=
(a
n+3)(a
n-1),∴當(dāng)n≥2時(shí),S
n-1=
(an-1+3)(an-1-1),a
n=S
n-S
n-1=
(a
n+3)(a
n-1)-
(an-1+3)(an-1-1),
化為(a
n+a
n-1)(a
n-a
n-1-2)=0,∵?n∈N
*,a
n>0,∴a
n-a
n-1=2,
當(dāng)n=1時(shí),a
1=S
1=
(a1+3)(a1-1),a
1>0,解得a
1=3.
∴數(shù)列{a
n}是等差數(shù)列,首項(xiàng)為3,公差為2.
∴a
n=3+2(n-1)=2n-1.
(2)由(1)可得b
n=
+
=
+=2+2
(-),
∴數(shù)列{b
n}的前n項(xiàng)和T
n=2n+2
[(1-)+(-)+…+
(-)]=2n+2
(1-)=2n+
.
點(diǎn)評(píng):本題考查了遞推式的應(yīng)用、等差數(shù)列的定義及其通項(xiàng)公式、“裂項(xiàng)求和”,考查了推理能力與計(jì)算能力,屬于中檔題.