精英家教網 > 高中數學 > 題目詳情

【題目】某工藝公司要對某種工藝品深加工,已知每個工藝品進價為20元,每個的加工費為n元,銷售單價為x.根據市場調查,須有,,同時日銷售量m(單位:個)與成正比.當每個工藝品的銷售單價為29元時,日銷售量為1000.

1)寫出日銷售利潤y(單位:元)與x的函數關系式;

2)當每個工藝品的加工費用為5元時,要使該公司的日銷售利潤為100萬元,試確定銷售單價x的值.(提示:函數的圖象在上有且只有一個公共點)

【答案】1;(2

【解析】

1)由日銷售量m(單位:個)與成正比,設,根據條件求出,再由,即可求出函數關系式;

2)當時,結合(1)的函數關系可得,觀察可得是方程的解,再由條件可知方程在上有且只有一個解,即可求得結論.

1)設.

時,,則,

所以,

所以.

2)當時,,

整理得.

因為函數的圖象在

上有且只有一個公共點,且當時,等式成立,

所以是方程唯一的根,

所以銷售單價為26.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知二次函數滿足條件是偶函數, ,且的圖象與直線恰有一個公共點.

1)求的解析式;

2)設,是否存在實數,使得函數在區(qū)間上的最大值為2?如果存在,求出的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解甲、乙兩種離子在小鼠體內的殘留程度,進行如下試驗:將200只小鼠隨機分成兩組,每組100只,其中組小鼠給服甲離子溶液,組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經過一段時間后用某種科學方法測算出殘留在小鼠體內離子的百分比.根據試驗數據分別得到如下直方圖:

為事件:“乙離子殘留在體內的百分比不低于”,根據直方圖得到的估計值為.

(1)求乙離子殘留百分比直方圖中的值;

(2)分別估計甲、乙離子殘留百分比的平均值(同一組中的數據用該組區(qū)間的中點值為代表).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某工廠生產一種產品,根據預測可知,該產品的產量平穩(wěn)增長,記2015年為第1年,第x年與年產量(萬件)之間的關系如下表所示:

x

1

2

3

4

4.00

5.52

7.00

8.49

現有三種函數模型:,,

1)找出你認為最適合的函數模型,并說明理由,然后選取這兩年的數據求出相應的函數解析式;

2)因受市場環(huán)境的影響,2020年的年產量估計要比預計減少30%,試根據所建立的函數模型,估計2020年的年產量.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】拋物線的焦點為F ,已知點A ,B 為拋物線上的兩個動點,且滿足.過弦AB 的中點M 作拋物線準線的垂線MN ,垂足為N,則 的最大值為__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖1,有一邊長為2的正方形ABCDE是邊AD的中點,將沿著直線BE折起至位置(如圖2),此時恰好,點在底面上的射影為O.

1)求證:;

2)求直線與平面BCDE所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為迎接2017年“雙”,“雙”購物狂歡節(jié)的來臨,某青花瓷生產廠家計劃每天生產湯碗、花瓶、茶杯這三種瓷器共個,生產一個湯碗需分鐘,生產一個花瓶需分鐘,生產一個茶杯需分鐘,已知總生產時間不超過小時.若生產一個湯碗可獲利潤元,生產一個花瓶可獲利潤元,生產一個茶杯可獲利潤元.

(1)使用每天生產的湯碗個數與花瓶個數表示每天的利潤(元);

(2)怎樣分配生產任務才能使每天的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】即將開工的南昌與周邊城鎮(zhèn)的輕軌火車路線將大大緩解交通的壓力,加速城鎮(zhèn)之間的流通.根據測算,如果一列火車每次拖4節(jié)車廂,每天能來回16次;如果一列火車每次拖7節(jié)車廂,每天能來回10次,每天來回次數是每次拖掛車廂個數的一次函數.

1)寫出的函數關系式;

2)每節(jié)車廂一次能載客110人,試問每次應拖掛多少節(jié)車廂才能使每天營運人數最多?并求出每天最多的營運人數(注:營運人數指火車運送的人數)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱錐中,平面平面為等邊三角形,,,,點的中點.

1)求證:平面;

2)求二面角的余弦值.

查看答案和解析>>

同步練習冊答案